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Abstract.

We consider two de�nitions of upper porosity of measures and we prove that
the �rst one only can take the values 0 and 1
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or 1:
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1. Results.

In this paper we introduce two de�nitions of upper porosity of a measure (see
De�nitions 1.3 and 1.5) which range from 0 to 1

2
and from 0 to 1 respectively, and

prove (Theorem 1.8 and Corollary 1.9) that actually the �rst porosity only can
take the extreme values 0 or 1

2
; and the second one takes either the value 0 or the

values 1
2
or 1: The other main result of this paper (see Theorem 1.2, Corollary 1.4

and Proposition 1.6) says that any measure � which does not satisfy the doubling
condition �-a:e: has a maximal porosity.

1.1. Porosities of sets and the doubling condition.

Let B(x; r) be the closed ball with center x 2IRn and radius r: For A �IRn;
x 2IRn and r > 0; let

p(A; x; r) = supf� : B(z; �) � B(x; r)nA for some z 2 IRng;



p(A; x) = lim sup
r#0

p(A; x; r)

r
and

p(A; x) = lim inf
r#0

p(A; x; r)

r
:

For x 2 A; p(A; x; r) takes a value in between 0 and r=2; so p(A; x) and p(A; x)
take values in between 0 and 1

2
:

The upper and lower porosity of a set A are given by

p(A) = inffp(A; x) : x 2 Ag and p(A) = inffp(A; x) : x 2 Ag

respectively. The set A is said to be porous if p(A) > 0 and very porous if
p(A) > 0: The set A is said to be strongly porous if p(A) = 1

2
and strongly very

porous if p(A) = 1
2
: The set A is said to be �-porous (�-very porous, �-strongly

porous, �-strongly very porous) if A is a countable union of porous (very porous,
strongly porous, strongly very porous) sets. Results on porous sets connected
with problems in analysis can be seen in [9] and [10], and results on Hausdor¤
dimension of very porous sets can be found in [5] and [8].

The doubling condition is usually imposed in problems of harmonic analysis,
Vitali coverings theorems and tangent measures theory ([1],[2],[4] and [5]).
A probability measure � on IRn satis�es the doubling condition at a point a 2 IRn
if

lim sup
r#0

�(B(a; 2r))

�(B(a; r))
<1:

1.2. Main results.

We begin studying the Radon probability measures � on IRn which do not sat-
isfy the doubling condition �-a:e: We prove (see Theorem 1.2) that any Radon
probability measure � gives two alternative decompositions of IRn into three sets:

� the set where the doubling condition holds, a set with arbitrary small �-
measure and a strongly porous set. This last set is contained in a very
sparse set de�ned as an intersection of disjointed unions of annuli of width
tending to zero (see Lemma 1.1 below).

� the set of points where the doubling condition holds, a set of null �-measure
and a �-strongly porous set.
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The following lemma describes the geometry of the set of points where a mea-
sure does not satisfy the doubling condition.

Lemma 1.1. Let � be a Radon probability measure on IRn and let A be the set
of points where � does not satisfy the doubling condition. Let f�ig be a sequence
of real numbers such that limi!1 �i = 1 and 0 < �i < 1; i 2 IN: Then for any
" > 0; there exist a family fxi;jgi;j2IN of points in A and a family fri;jgi;j2IN of
radii, with ri;j < 1=i for all j 2 IN; such that

�

 
An
 1\
i=1

1[
j=1

Wi;j

!!
� "

where Wi;j := B(xi;j; ri;j)nB(xi;j; �iri;j); and for any i 2 IN the balls in the family
fB(xi;j; ri;j)gj2IN are disjointed balls.

This result gives a strong indication that the measures which do not satisfy the
doubling condition are exceptional. In particular we conjecture that an ergodic
measure invariant for a smooth hyperbolic dynamical system in a n-dimensional
manifold must satisfy the doubling condition. We have been unable to prove
this conjecture from Lemma 1.1, which, however, gives easily the following result
relating porosity to doubling condition.

Theorem 1.2. Let � be a Radon probability measure on IRn and let A be the
set of points where � does not satisfy the doubling condition. The following
statements hold.
i) For all " > 0; there is a strongly porous subset A� of A such that �(AnA�) � ":
ii) There exists a �-strongly porous subset C of A such that �(A) = �(C):

This theorem suggests the following de�nitions of porosity of a measure.

De�nition 1.3. Let � be a measure over IRn: We de�ne the upper and lower
porosity of � as

p(�) = supfp(A) : A � IRn with �(A) > 0g

and
p(�) = supfp(A) : A � IRn with �(A) > 0g

respectively. We say that � is a porous measure if p(�) > 0 and a very porous
measure if p(�) > 0: The notions of strongly porous and very strongly porous
measures are de�ned in the obvious way.
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Corollary 1.4. Let � be a Radon probability measure on IRn which does not
satisfy the doubling condition �-a:e: Then p(�) = 1

2
:

We will use this corollary in proving that any porous measure is a strongly
porous measure (see Theorem 1.8).
We now introduce another de�nition of upper porosity of a measure � which

is equivalent, when the measure � satis�es the doubling condition �-a:e:; to that
given in de�nition 1.3. We use this equivalence in the proof of Theorem 1.8.

De�nition 1.5. The upper porosity por(�) of � is given by

por(�) := inffs : por(�; x) � s; �-a:e x 2 IRng (1.1)

where
por(�; x) := lim

"#0
lim sup

r#0
por(�; x; r; ")

is the upper porosity of � at x and

por(�; x; r; ") := supf� : there is a z 2 IRn such that B(z; �r) � B(x; r)
and �(B(z; �r)) � "�(B(x; r))g:

Notice that por(�) ranges from 0 to 1: This is the version for the upper porosity
of the following de�nition of lower porosity por(�) given by J-P. Eckmann, E.
Järvenpää and M. Järvenpää in [3]:

por(�) = inffs : por(�; x) � s; �-a:e: x 2 IRng; (1.2)

where
por(�; x) := lim

"#0
lim inf

r#0
por(�; x; r; ");

is the lower porosity of � at x:
They prove that por(�) � p(�) holds for any Radon probability measure �;

and if � satis�es the doubling condition �-a:e: then por(�) = p(�); but por(�) >
p(�) may occur if the doubling condition fails to hold �-a:e: ([3], example 4).
Obvious changes in the proof of these facts give the corresponding results for the
upper porosities of the measure, that is p(�) � por(�) for any Radon probability
measure �; and if � satis�es the doubling condition �-a:e: then p(�) � por(�);
and hence por(�) = p(�):
Notice that if � does not satisfy the doubling condition por(�) � p(�) = 1

2

holds. We prove that in this case por(�) = 1:
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Proposition 1.6. Let � be a Radon probability measure on IRn which does not
satisfy the doubling condition �-a:e: Then por(�) = 1:

The next lemma characterizes strongly porous measures in terms of their tan-
gent measures.
Tangent measures, introduced by Preiss ([7]), have turned out to be a powerful

tool for the study of the local behaviour of measures. Given a locally �nite Borel
measure � over IRn; the measure � is a tangent measure of � at a point a if it is
a non null locally �nite Borel measure and there are sequences fcig and frig of
positive numbers such that frig # 0 and

ciTa;ri#�
w! �

holds, where Ta;ri are the homotheties given by Ta;ri(x) =
x�a
ri
; Ta;ri#� is the

measure induced by Ta;ri; (i.e. Ta;ri#�(A) = �(a+ riA); A �IRn) and
w! denotes

the weak convergence of measures: The set of all such tangent measures is denoted
by Tan(�; a) and the support of the measure � is denoted by spt(�):

Lemma 1.7. Let � be a Radon probability measure on IRn satisfying the dou-
bling condition �-a:e: Let

B := fa 2 IRn : there is � 2 Tan(�; a) such that spt(�) 6= IRng:

Then
p(�) =

1

2
() �(B) > 0

From this lemma easily follows the main result of this paper:

Theorem 1.8. Let � be a Radon probability measure on IRn: Then p(�) is either
0 or 1

2
:

Corollary 1.9. Let � be a Radon probability measure on IRn: Then por(�) is
0; 1

2
or 1:

We only can obtain the lower bound 1
4
for the porosity of subsets arbitrarily

close in measure to a given porous set, although it seems likely that this bound
can be improved to 1

2
:
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Theorem 1.10. Let � be a Radon probability measure on IRn which satis�es
the doubling condition �-a:e: and let A � IRn: If p(A) > 0 then for any ";
0 < " < �(A); there is a set A� � A such that �(AnA�) � " and p(A�) � 1

4
:

Finally we give an example of measures with p(�) = 1
2
. The proposition is

essentially known to hold (see Theorems 11.11 and 6.9 in [5]). However, Lemma
1.7 gives a very simple proof of this result.

Proposition 1.11. Let � be a Radon probability measure on IRn and let s < n:
If the set of points a 2IRn where

0 < �s�(�; a) := lim inf
r#0

�(B(a; r))

(2r)s
� ��s(�; a) := lim sup

r#0

�(B(a; r))

(2r)s
<1 (1.3)

holds has a positive � measure then p(�) = 1
2
:

Among the measures which this proposition applies to is the restriction of the
s-dimensional Hausdor¤ measure Hs to a s-dimensional self-similar set E �IRn
if 0 < Hs(E) <1 and s < n:

1.3. Complementary results.

We give other results related to very porous measures and to the doubling condi-
tion. The next lemma is used to characterize very porous measures in terms of a
porosity property of their tangent measures. We denote by U(x; r) the open ball
centered at x and with radius r:

Lemma 1.12. Let � be a Radon probability measure on IRn; let A � IRn and let
� be a constant with 0 < � � 1

2
: The following statement holds for �-a:e: a 2 A:

If p(A; a) � �; then for every � 2 Tan(�; a) there is a point y 2 B(0; 1� �) such
that �(U(y; �)) = 0:

From this lemma the following property follows.

Proposition 1.13. Let � be a Radon probability measure on IRn; let � be a
constant with 0 < � � 1

2
and let

C := fa 2 IRn : 8� 2 Tan(�; a) there is an y 2 B(0; 1��) such that �(U(y; �)) = 0g:
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Then,
p(�) > � =) �(C) > 0

and if � satis�es the doubling condition �-a:e: then

�(C) > 0 =) p(�) � �:

Finally, we state another property of measures which do not satisfy the dou-
bling condition at a point a 2 IRn: Given A � IRn; we denote by � jA the
restriction of the measure � to the set A:

Proposition 1.14. Let � be a Radon measure which does not satisfy the doubling
condition at a point a 2 IRn: Then, there is a sequence frig # 0 such that the
measures

1

�(B(a; ri))
Ta;ri#(� jB(a; ri))

converge weakly to a probability measure on @B(0; 1):

2. Proofs.

2.1. Proof of Theorem 1.2.

Proof of Lemma 1.1.
It is easy to see that � satis�es

lim sup
r#0

�(B(x; r))

�(B(x; �r))
=1 (2.1)

for all � 2 (0; 1) and all x 2 A: Let f�igi2IN be any sequence such that limi!1 �i =
1 with 0 < �i < 1 for any i 2 IN: Given " > 0 and x 2 A; by (2.1)

�(B(x; r))

�(B(x; �ir))
� 2i

"

holds for arbitrarily small values of r: Let Vi be the Vitali class given by

Vi = fB(x; r) : x 2 A;
�(B(x; r))

�(B(x; �ir))
� 2i

"
and r <

1

i
g:
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By Vitali covering theorem (see Theorem 2.8 in [5]), there is a sequence of dis-
jointed balls fBi;jgj2IN � Vi; Bi;j = B(xi;j; ri;j); such that

�(An
1[
j=1

Bi;j) = 0: (2.2)

For all i; j 2 IN; let B0i;j = B(xi;j; �iri;j) and Wi;j = Bi;jnB0i;j: Then

�(Bi;j) �
2i

"
�(B0i;j)

for all i; j 2 IN which, together with (2.2), gives

�

 
An
 1\
i=1

1[
j=1

Wi;j

!!
= �

 1[
i=1

 
An

1[
j=1

Wi;j

!!
�

1X
i=1

�

 
An

1[
j=1

Wi;j

!
=

1X
i=1

�

 
A
\ 1[

j=1

B0i;j

!
�

1X
i=1

"

2i
�

 1[
j=1

Bi;j

!
� "

Proof of Theorem 1.2.
i) For " > 0; let C =

T1
i=1

S1
j=1Wi;j be the set used in Lemma 1.1 andA� = A

T
C:

Then A� � A and �(AnA�) � ": We now check that p(A�) = 1
2
: If x 2 A� then

x 2
S1
j=1Wi;j for all i 2 IN. Therefore, for all i 2 IN, there is a unique index j(i)

such that x 2 Wi;j(i) = Bi;j(i)nB0i;j(i): Obviously B0i;j(i) � B(x; 2ri;j(i))nA� so that

p(A�; x; 2ri;j(i)) � �iri;j(i) (2.3)

holds for all i 2 IN: Consider the sequence of radius given by f2ri;j(i)gi2IN: Since
ri;j(i) is the radius of the ball Bi;j(i) we have that ri;j(i) < 1

i
for all i; and by (2.3)

lim supi!1
p(A�;x;2ri;j(i))

2ri;j(i)
� 1

2
: Thus, lim supr#0

p(A�;x;r)
r

� 1
2
and, since p(A�;x;r)

r
� 1

2
;

the result follows.
ii) Let A� be as in part i) and let A�0 = A

�: The argument used in Lemma 1.1 gives
the existence of sets A�i � An(

Si�1
k=0A

�
k) ; i � 1 such that �(An

Si
k=0A

�
i ) � "=2i

and p(A�i ) =
1
2
: Thus the set C =

S1
i=0A

�
i � A is a �-strongly porous set and

�(C) = limi!1 �(
Si
k=0A

�
k) � �(A)� limi!1

"
2i
= �(A):

Proof of Corollary 1.4.
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The set A� of part (i) in Theorem 1.2 has a positive measure and its upper
porosity is equal to 1

2
:

Proof of Proposition 1.6.
Let A be the set of points where the doubling condition does not hold, let

f"jg be a sequence in (0; 1) such that limj!1 "j = 0; and let x 2 A: Using
(2.1) for � = 1 � "j we get that �(B(x; (1 � "j)r)) � "j�(B(x; r)) holds for
arbitrarily small values of r: Then por(�; x; r; "j) � (1 � "j) for such values of r
and lim supr!0 por(�; x; r; "j) � 1�"j: Thus, limj!1 lim supr!0 por(�; x; r; "j) � 1
and then por(�; x) = 1 for any x 2 A: Therefore por(�) = 1:

2.2. Proof of Theorem 1.8.

We �rst introduce results on tangent measures that we need later on. In [7] it is
proved that if � is an almost �nite measure over IRn; then Tan(�; a) 6= ; for �
almost every a 2IRn. If � satis�es the doubling condition at a; then any sequence
frig # 0 contains a subsequence frijg such that

1

�(B(a; rij))
Ta;rij#�

w! � 2 Tan(�; a)

([5],Theorem 14.3). Furthermore, for all � 2 Tan(�; a) there are a sequence
frig # 0 and a positive number c such that � = c limi!1

1
�(B(a;ri))

Ta;ri#� ([5],
Remark 14.4).
We denote by @A the boundary of the set A: Recall that U(x; r) is the open ball
with center at x 2IRn and radius r:

Lemma 2.1. Let � be a Radon probability measure on IRn; let D be the set of
points where the doubling condition holds and A � D: The following statement
holds for �-a:e: a 2 A:
If p(A; a) > 0; then there exist a �� 2 Tan(�; a) and an open half-space H such
that 0 2 @H and ��(H) = 0:

Proof.
Let a 2 A be a �-density point of A; that is

lim
r#0

�(B(a; r)nA)
�(B(a; r))

= 0;
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let � = p(A; a) > 0 and 0 < " < �=2: We may select a sequence of radii frig # 0
such that p(A; a; ri) � (� � ")ri for all i and 1

�(B(a;ri))
Ta;ri#�

w! � 2 Tan(�; a):
Furthermore, since p(A; a; ri) � (�� ")ri; there is a sequence fzig of points such
that B(zi; (� � ")ri) � B(a; ri)nA for all i: Let yi = zi�a

ri
: By the compactness of

B(0; 1��+ "); there is a subsequence of fyig; which for simplicity we also denote
by fyig; such that limi!1 yi = y 2 B(0; 1� �+ "): Thus,

�(U(y; �� 2")) � lim inf
i!1

1

�(B(a; ri))
Ta;ri#�(U(y; �� 2")) �

lim inf
i!1

1

�(B(a; ri))
Ta;ri#�(U(yi; �� ")) = lim inf

i!1

1

�(B(a; ri))
�(U(zi; ri(�� ")))

� lim inf
i!1

�(B(a; ri)nA)
�(B(a; ri))

= 0:

Thus spt(�) 6= IRn and there exists �� 2 Tan(�; a) and an open half space H (see
the proof of part (3) of Theorem 14.7 in [5]) such that 0 2 @H; and ��(H) = 0:
Remark 1. This lemma was initially formulated stating that if p(A; a) = � > 0;
then there exist y 2 B(0; 1 � �) and � 2 Tan(�; a) such that �(U(y; �)) = 0:
The present formulation has been possible thanks to an anonymous referee who
gave us the reference of Theorem 14.7 in [5]. This, together with Theorem 1.10,
allowed us to obtain �rstly that p(�) > 0 implies p(�) � 1

4
; and afterwards we

improved this result with Theorem 1.8.

Proof of Lemma 1.7.
We �rst prove that p(�) = 1

2
=) �(B) > 0:

If p(�) = 1
2
then for any " > 0 there is a set E with �(E) > 0 such that p(E) >

1
2
�": Then Lemma 2.1 gives �(B) � �(E�) = �(E) > 0 where E� = fx 2 E\D :
there is � 2 Tan(�; x) such that spt(�) 6= IRng:
We now prove that �(B) > 0 =) p(�) = 1

2
:

By Theorem 14.7 in [5], we know that for any a 2 B \ D there are a measure
�� 2 Tan(�; a) and an open half-space H such that 0 2 @H and ��(H) = 0: Since
a 2 D there exist a positive constant c and a sequence frig # 0 such that �� =
c 1
�(B(a;ri))

limi!1 Ta;ri#�: Since �
�(H) = 0; there exists a point y 2 H \ @B(0; 1

2
)

such that for any � > 0

0 = ��(B(y;
1

2
� �)) � c lim sup

i!1

1

�(B(a; ri))
Ta;ri#�(B(y;

1

2
� �))

= c lim sup
i!1

�(B(a+ riy; ri(
1
2
� �)))

�(B(a; ri))
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holds. Thus, for any " > 0; �(B(zi;ri(
1
2
��)))

�(B(a;ri))
< " holds for su¢ ciently large i; where

zi := a+ riy: Therefore for any �; " and a 2 B \D; we have that por(�; a; ri; ") �
1
2
�� for su¢ ciently large i: This implies (see 1.1) that por(�) � 1

2
: Since � satis�es

the doubling condition �-a:e: and p(�) � 1
2
we obtain 1

2
� por(�) = p(�) � 1

2
:

Proof of Theorem 1.8.
If � does not satisfy the doubling condition �-a:e then Corollary 1.4 gives

p(�) = 1
2
:

Assume now that � satis�es the doubling condition �-a:e: Let � be any con-
stant with 0 < � < p(�) and let A be a set with �(A) > 0 and p(A) � �: Using
Lemma 2.1 we get that the set

A� := fa 2 A : there is � 2 Tan(�; a) such that spt(�) 6= IRng

satis�es that �(A�) = �(A) > 0; and Lemma 1.7 gives the claim.

Proof of Corollary 1.9.
If � satis�es the doubling condition �-a:e then p(�) = por(�) and the above

theorem gives that por(�) only can take the values 0 or 1
2
: If � does not satisfy

the doubling condition �-a:e then Corollary 1.9 gives por(�) = 1:

Notice that actually por(�) can take this three values: if � does not satisfy
the doubling �-a:e: then por(�) = 1; if (1.3) holds �-a:e: then 1

2
= p(�) = por(�);

and if the doubling condition holds and p(�) = 0 then por(�) = 0:

2.2.1. Proofs of Theorem 1.10 and Proposition 1.11.

Proof of Theorem 1.10.
Since � := p(A) > 0; the set B := fa 2 A \ D : there is � 2 Tan(�; a) such

that spt(�) 6= IRng satis�es �(B) = �(A) (see Lemma 2.1). We now prove that
for any "; 0 < " < �(A); there exists a set A� � B such that �(BnA�) � " and
p(A�) � 1

4
: Since �(B) = �(A) this gives the claim.

Let a 2 B and � 2 Tan(�; a) such that spt(�) 6= IRn: Then, there exists
�� 2 Tan(�; a) and an open half-space H such that 0 2 @H and ��(H) = 0:
Since a 2 D; there exist a positive constant c and a sequence frig # 0 such that
�� = c limi!1

1
�(B(a;ri))

Ta;ri#�: Since �
�(H) = 0; there is a point y 2 H\@B(0; 1=2)
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such that for any � > 0

0 = ��(B(y;
1

2
� �)) � c lim sup

i!1

1

�(B(a; ri))
Ta;ri#�(B(y;

1

2
� �))

= c lim sup
i!1

�(B(a+ riy; ri(
1
2
� �)))

�(B(a; ri))

holds. Then, given an " > 0 and a k > 0; there is an ik such that

�(B(a+ riy; ri(
1
2
� 2�k)))

�(B(a; ri))
<
"

2k
for i > ik:

Let Vk be the Vitali class given by

Vk = fB(a; r) : a 2 B; r < 1
k
and there is an y 2 @B(0; 1=2) such that

�(B(a+ry;r( 1
2
�2�k)))

�(B(a;r))
< "

2k
g:

By Vitali covering theorem, there is a sequence of disjointed balls fBk;jg1j=1 � Vk;
Bk;j = B(xk;j; rk;j); satisfying

�(Bn
1[
j=1

Bk;j) = 0: (2.4)

Since each ball Bk;j 2 Vk; there is an yk;j 2 @B(0; 12) such that

�(B0k;j)

�(Bk;j)
<
"

2k
; (2.5)

where B0k;j = B(xk;j + rk;jyk;j ; (
1
2
� 2�k)rk;j): Let Wk;j = Bk;jnB0k;j and A� =

B
T�T1

k=1

S1
j=1Wk;j

�
: Using (2.4) and (2.5) we obtain �(A�) > �(B) � " =

�(A)� ": Let x 2 A�; then for all k 2 IN; x 2
S1
j=1Wk;j holds. Thus, there is an

unique index j(k) such that x 2 Wk;j(k): Since B0k;j(k) � B(x; 2rk;j(k))nA� we have
that p(A�; x; 2rk;j(k)) � (12 � 2

�k)rk;j(k) and then p(A�; x) � 1
4
for all x 2 A�:

Remark 2. Let D be the set of points where the doubling condition holds. If
�(D) < 1 then, for any "; 0 < " < �(A \ Dc); there is a set A� � A \ Dc such
that �(A�) � �(A \Dc)� " and p(A�) = 1

2
:
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Proof of Proposition 1.11.
Let D � A be the set of points where the doubling condition holds. Theorem

14.7 in [5] guarantees that for �-a:e: a 2 A and every � 2 Tan(�; a); there is a
positive number c such that

tcrs � �(B(x; r)) � crs; for x 2 spt(�); 0 < r <1;

where t = t(a) = �s�(�; a)=�
�s(�; a): Therefore, since s < n we have that spt(�) 6=

IRn for every � 2 Tan(�; a) and �-a.e. a 2 A (see [5], Chap. 14, exer. 4): Thus
the set A1 = fa 2 A : there exists � 2 Tan(�; a) such that spt(�) 6= IRng satis�es
that �(A1) = �(A) > 0; and Lemma 1.7 gives p(�) = 1

2
provided �(D) = 1: If

�(D) < 1 then Corollary 1.4 gives the result.

2.3. Proofs of complementary results.

Proof of Lemma 1.12.
Let a be a �-density point of A; that is

lim
r#0

�(B(a; r)nA)
�(B(a; r))

= 0;

and let � = limi!1 ciTa;ri#� 2 Tan(�; a): Then (see Remark 14.4, part (1),
in [5]) there are a subsequence frijg of frig and a constant R > 1 such that
� = limj!1

c
�(B(a;Rrij ))

Ta;rij#�: Let f"kg be a decreasing sequence tending to zero.
Since p(A; a) � �; for a given "k; there is an ik such that p(A; a; rij) � (�� "k)rij
for all ij > ik: The argument used in Lemma 2.1 gives a point yk 2 B(0; 1��+"k)
such that

�(U(yk; �� 2"k)) � c lim inf
j!1

�(B(a; rij)nA)
�(B(a;Rrij))

� c lim inf
j!1

�(B(a; rij)nA)
�(B(a; rij))

= 0:

The sequence fykg has a subsequence which converges to a point y 2 B(0; �): Let
� > 0: There is an index k such that

�(U(y; �� �)) � �(U(yk; �� 2"k)) = 0

and letting � # 0 the claim follows.

Proof of Proposition 1.13.
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We �rst prove p(�) > � =) �(C) > 0:
Since p(�) > � there is a set E with �(E) > 0 such that p(E) � �: Lemma 1.12
gives that the set E� = fa 2 E : for any � 2 Tan(�; a) there exists y 2 B(0; 1��)
such that �(U(y; �)) = 0g satis�es that �(E�) = �(E) > 0 so that �(C) > 0:
We now prove �(C) > 0 =) p(�) � �:
Let D be the set of points where the doubling condition holds. Since �(D) = 1
then p(�) = por(�) holds (see 1.2). Then, it is su¢ cient to prove that for any
x 2 C \D and " > 0;

lim inf
r#0
por(�; x; r; ") � �:

If this is not the case, there are x 2 C \ D; " > 0; a sequence of radii frig # 0
such that

por(�; x; ri; ") <
p+ �

2
(2.6)

where p := lim infr#0 por(�; x; r; "): Since x 2 D there exist a subsequence frijg of
frig and a point y 2 B(0; 1��) such that 1

�(B(x;rij ))
Tx;rij#�

w! � 2 Tan(�; x) and
�(U(y; �)) = 0: Let � be a constant with 0 < � < (�� p)=2: Then,

0 = �(B(y; �� �)) � lim sup
i!1

�(B(x+ rijy; rij(�� �))
�(B(x; rij))

holds. Hence for any " > 0 there are j0 and zj := x+rijy such that �(B(zj; rij(��
�)) � "�(B(x; rij)) andB(zj; rij(���)) � B(x; rij) for j > j0: Therefore por(�; x; rij ; ") �
�� � > p+�

2
which contradicts (2.6).

Proof of Proposition 1.14.
For i 2 IN; let �i = 1� 2�i: Since � does not satisfy the doubling condition at

a; it follows that
�(B(a; r))

�(B(a; �ir))
> 2i

for arbitrarily small values of r: Thus, we may select a sequence frjg # 0 such
that �(B(a; rj)) > 2j�(B(a; �jrj)): Let f�jg be the sequence of measures given
by �j = 1

�(B(a;rj))
Ta;rj#(� jB(a; rj)) and take R > 0: Then,

�j(B(0; R)) =
�(B(a; rj) \B(a;Rrj))

�(B(a; rj))
� 1;

and supf�j(K) : j = 1; 2; :::g < 1 for all compact sets K � IRn. Therefore
there is a subsequence f�jkg of f�jg; which converges weakly to some measure

14



�: It is easy to see that � is a probability measure on B(0; 1): We now see that
�(@B(0; 1)) = 1: Let Ci = B(0; 1)nU(0; �i); then

�jk(Ci) =
�(B(a; rjk)nU(a; �irjk))

�(B(a; rjk))
� �(B(a; rjk)nU(a; �jkrjk))

�(B(a; rjk))
> 1�2�k for jk > i;

so �(Ci) � lim supk!1 �jk(Ci) � 1; and we get �(@B(0; 1)) = limi!1 �(Ci) = 1:
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FINAL REMARK
At the time of revising the galley proofs of this paper we have known that

Theorem 1.8 can also be proved using results of Ludµek Zajiµcek (see [11]). These
results also allows us to prove that Theorem 1.10 holds with

_
p(A�) > c for c

arbitrarily close to 1
2
(see [6]).
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