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Abstract. We show that given a σ-finite Borel regular measure µ
in a metric space X, every σ-porous subset of X of finite measure
can be approximated by strongly porous sets. It follows that every
σ-porous set is the union of a σ-strongly porous set and a µ-null
set. This answers in the positive the question whether a measure
which is absolutely continuous with respect to the σ-ideal of all
σ-strongly porous sets is absolutely continuous with respect to the
σ-ideal of all σ-porous sets. Using these results, we obtain a nat-
ural decomposition of measures according to their upper porosity
and obtain detailed information on values that upper porosity may
attain almost everywhere.

1. Introduction and notes on the notions of porosity

We show that from the point of view of σ-finite Borel regular mea-
sures (on separable metric spaces) the difference between porous and
strongly porous sets is negligible in a rather strong sense: σ-porous
sets of finite measure become strongly porous after deleting sets of ar-
bitrarily small measure and all σ-porous sets become σ-strongly porous
after deleting a null set. As a corollary we obtain a negative answer
to Question 4.31 of [8] whether there is a Radon measure in R which
is absolutely continuous with respect to the σ-ideal of all σ-strongly
porous sets and is not absolutely continuous with respect to the σ-
ideal of all σ-porous sets. Our arguments also show that the answer to
the natural extension of this question to general metric spaces remains
negative. We then turn our attention to (upper) porosities of mea-
sures and strengthen the results of [4] on attainable values of porosities
of measures. The proofs presented here are simpler and work also in
(separable) metric spaces. The key to all our results is the decompo-
sition theorem for σ-porous sets of [7], whose appropriate version can
be found in Proposition 1.3 below.
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Before giving a more detailed account of our results, we would like
to make two remarks on the notion of porosity and its generalizations.

Quantitative notions of porosity of a subset S of Rn at a point x go
back to Denjoy. They are defined by limit behaviour, as r → 0, of the
maximal ratio s/r, where s are such that the ball B(x, r) centered at x
with radius r contains a ball B(z, s) which does not meet S. Depending
on applications, the limit behaviour is defined as either upper or lower
limit, and both these (non-equivalent) notions are called “porosity of
S at x”. Since this inconsistency has caused some confusion, here we
use the terms upper and lower porosity S at x. However, since our
results concern only the case of upper porosity, we speak about porous
or σ-porous sets without mentioning the adjective “upper”.

Note that “upper porosity” corresponds to the Denjoy-Dolzhenko
notion of porosity. Also note that “lower porous sets” correspond to
“very porous sets”. See [8] for further information and results related
to various notions of porosity.

Like many other authors, we are interested in porosity notions in
metric spaces. The above definition is sometimes used, but in strange
metric spaces it may exhibit unexpected behaviour (cf Remark 1.2(iv)).
We correct this situation by requiring that the ball B(z, s) is con-
tained in B(x, r) not only geometrically but also algebraically, i.e. that
dist(z, x)+s ≤ r. One of the advantages of this (admittedly somewhat
formal) concept is that it gives natural results when used to define the
notion of porosity of measures. Had we been interested in porosity of
sets only, we would probably base our notion on the concept of 〈g〉-
porosity from [7, 8]: we would not require that B(z, s) ⊂ B(x, r) but
that z ∈ B(x, r). However, this concept does not extend the above
notion from Rn, although the two concepts become equivalent after a
simple rescaling (in fact, the new notion is rescaling equivalent to the
notion we use; see Remark 1.2(iii)).

Definition 1.1. Let (X, ρ) be a metric space. We denote by B(x, r)
the open ball with center x ∈ X and radius r. For A ⊂ X, x ∈ X, and
r > 0 let

γ(A, x, r) := sup{s > 0 : there is z such that %(z, x) + s ≤ r

and B(z, s) ∩ A = ∅}
(where we put sup ∅ := 0). The upper porosity of A at the point x and
the upper porosity of the set A are defined by

p(A, x) := lim sup
r↓0

γ(A, x, r)

r
and p(A) := inf{p(A, x) : x ∈ A},

respectively.
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We say that A ⊂ X is porous if p(A, x) > 0 for each x ∈ A.
A set A ⊂ R is called strongly porous if p(A) = 1/2 or A = ∅.
We say that A is σ-porous (σ-strongly porous) if it is a countable

union of porous (strongly porous) sets.

Remark 1.2. (i) It is easy to see that p(A, x) = 1 if x /∈ A and
0 ≤ p(A, x) ≤ 1/2 in the opposite case. Therefore p(A) ≤ 1/2
for each nonempty A ⊂ X.

(ii) If x ∈ A, then it is easy to see that p(A, x) = 1/2 iff there exists
a sequence of balls B(zn, sn) such that zn → x, B(zn, sn)∩A = ∅
and sn/ρ(x, zn) → 1.

(iii) The notion of porosity stemming from the 〈g〉-porosity of [7, 8]
(cf also [9]) would replace γ(A, x, r) by γ〈A, x, r〉 := sup{s :
B(z, s) ∩ A = ∅ for some z ∈ B(x, r)} and define p〈A, x〉 :=

lim supr↓0
γ〈A,x,r〉

r
. If x ∈ A then clearly p〈A, x〉 = p(A, x)/(1−

p(A, x)) and p(A, x) = p〈A, x〉/(1 + p〈A, x〉), hence this notion
is rescaling equivalent to that of Definition 1.1.

(iv) As was already mentioned, in general metric spaces the geomet-
ric condition B(z, s) ⊂ B(x, r) is less natural than the algebraic
one ρ(z, x) + s ≤ r.

To see this, put

S :=
∞⋃

n=0

[4−2n−1, 4−2n], T :=
∞⋃

n=0

{4−2n−1},

X := S ∪ (−S) ∪ {0}, A := T ∪ (−T ) ∪ {0}.

It is easy to see that in the metric space X (with the Euclidean
metric) the set A is not strongly porous (since p(A, 0) = 3/7 <
1/2) but with the geometrical definition the upper porosity of
A would equal 3/4 > 1/2.

This example confirms the observation made on several occa-
sions that the geometrical definition of strong porosity in gen-
eral metric spaces (proposed, for example, in [8]) should be
replaced by a more restrictive one.

The key to our results is the following statement which can be easily
deduced from Proposition 4.1 of [7] (Proposition 4.4 of [8]). In these
references, the statement is based on the notion of porosity indicated
in Remark 1.2(iii)), which is the most natural porosity notion in this
context. The reader may therefore find our adaptation of the proof
somewhat artificial.
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Proposition 1.3. Let X be a metric space, A ⊂ X be a σ-porous set
and p < 1/2. Then A can be written as A =

⋃∞
n=1 An where p(An) > p

for each n.

Proof. It is clearly sufficient to prove the assertion in the case when
p(A, x) > 0 for each x ∈ A. Choose 0 < q < 1 such that q/(1 + q) > p.
For k, l = 1, . . . define Ak,l := (

⋂∞
m=1 Mk,m) \ Mk−1,l, where M0,l = ∅

and, for k > 0, Mk,l is the union of all balls B(z, r) where 0 < r < 1/l
and B(z, qkr) ∩ A = ∅.

Whenever x ∈ Ak,l and m ≥ l, we use that x ∈ Mk,m to find 0 < r <
1/m and z ∈ X such that x ∈ B(z, r) and B(z, qkr) ∩ A = ∅. Since
B(z, qk−1(qr)) = B(z, qkr), we have B(z, qr) ⊂ Mk−1,l ⊂ X \ Ak,l and
%(z, x)+ qr ≤ (1+ q)r, hence γ(Ak,l, x, (1+ q)r) ≥ qr. Since m ≥ l was
arbitrary, we conclude that p(Ak,l, x) ≥ q/(1 + q) > p.

To finish the proof, it is enough to show that A ⊆ ⋃∞
k=1

⋃∞
l=1 Ak,l.

Let x ∈ A and find k so that p(A, x) > qk. Then for each m there
are 0 < r < 1/m, s > qkr and z ∈ X such that %(z, x) + s ≤ r and
B(z, s) ∩ A = ∅. Hence x ∈ B(z, r) and B(z, qkr) ∩ A = ∅, which
shows that x ∈ Mk,m. It follows that each x ∈ A belongs to

⋂∞
m=1 Mk,m

for some k ≥ 1; taking the least k with this property we have that
x /∈ Mk−1,l for some l, hence x ∈ Ak,l, as required. �

We will need also the following simple fact.

Lemma 1.4. For every subset A of a metric space X there is a Borel
set B ⊃ A such that p(B) = p(A).

Proof. We may assume that p := p(A) > 0 (otherwise consider B = X).
For k, l = 1, . . . denote by Gk,l the set of those x for which there are
0 < r < 1/l, s > (p(A) − 1/k)r and z ∈ X such that %(z, x) + s ≤ r
and B(z, s) ∩ A = ∅. Then each Gk,l is open and B :=

⋂∞
k,l=1 Gk,l is a

Gδ set such that A ⊂ B and p(B) = p(A). �

2. Measures absolutely continuous with respect to
porous and strongly porous sets

Let X be a metric space. We will say that µ is a Borel regular
measure on X if it is a complete measure for which all Borel sets are
measurable and

µ(M) = sup{µ(F ) : F ⊂ M, F is closed}
for each µ-measurable set M .

The full strength of Proposition 1.3 will now be used to show the ba-
sic fact that σ-porous sets of finite measure differ from strongly porous
sets by sets of arbitrarily small measure.
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Proposition 2.1. Let µ be a Borel regular measure on a metric space
X and let A ⊂ X be a µ-measurable σ-porous set of finite measure.
Then for every ε > 0 there is a closed strongly porous set S such that
µ(A \ S) < ε.

Proof. Fix for a moment a natural number n and use Proposition 1.3
to find sets An

k such that p(An
k) > 1

2
− 1

n
and

⋃∞
k=1 An

k = A. By Lemma
1.4 there are Borel sets Bn

k ⊃ An
k with p(Bn

k ) = p(An
k). The sets

Cn
k := Bn

k ∩A are µ-measurable and we can find an index kn such that

µ
(⋃kn

k=1 Cn
k

)
> µ(A) − 2−nε. Since µ is regular, we can choose closed

sets

F n
1 ⊂ Cn

1 , F n
2 ⊂ Cn

2 \ Cn
1 , . . . , F n

kn
⊂ Cn

kn
\ (Cn

kn−1 ∪ · · · ∪ Cn
1 )

such that µ
(⋃kn

k=1 F n
k

)
> µ(A) − 2−nε. Put Sn :=

⋃kn
k=1 F n

k . Since

any point of F n
k , k = 1, . . . , kn has a positive distance from the set

Sn \ F n
k , it is easy to see that Sn is a closed set satisfying p(Sn) >

1
2
− 1

n
. Consequently S :=

⋂∞
n=1 Sn is a closed strongly porous set.

Since A \ S ⊂ ⋃∞
n=1(A \ Sn), we obtain µ(A \ S) < ε. �

We say that µ is absolutely continuous with respect to a σ-ideal I
if µ(A) = 0 for each A ∈ I. Note that Tkadlec [6] proved that there
is a singular Radon measure on R which is absolutely continuous with
respect to the σ-ideal of all σ-porous sets.

Theorem 2.2. Let X be a metric space and let µ be a σ-finite Borel
regular measure on X. Then the following assertions hold.

(i) If A ⊂ X is σ-porous and µ-measurable, then
µ(A) = sup{µ(S) : S ⊂ A, S is closed and strongly porous}.

(ii) If B ⊂ X is σ-porous and µ-measurable, then there exists an
Fσ σ-strongly porous set K ⊂ B such that µ(B \K) = 0.

(iii) For every σ-porous set C ⊂ X there exists a σ-strongly porous
set T ⊂ C such that µ(C \ T ) = 0.

(iv) If µ is absolutely continuous with respect to the σ-ideal of all σ-
strongly porous sets, then it is absolutely continuous with respect
to the σ-ideal of all σ- porous sets.

Proof. The statement (i) is obtained by writing A as an increasing
union of µ-measurable sets An of finite measure and using Proposi-
tion 2.1 for each n.

To prove (ii), write B as an increasing union of µ-measurable sets
Bn of finite measure, use Proposition 2.1 to find closed strongly porous
sets Kn ⊂ Bn such that µ(Bn \Kn) < 2−n and put K :=

⋃∞
n=1 Kn.
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To prove (iii), find by Proposition 1.3 and Lemma 1.4 a σ-porous
Borel set B ⊃ C and then find a σ-strongly porous Fσ set K ⊂ B as
in (ii). It is clearly sufficient to put T := C ∩K.

The assertion (iv) immediately follows from (iii). �

3. Upper porosities of measures

Let µ be a Borel regular probability measure on a separable metric
space X. Some possible definitions of the notion of a lower porosity of
µ were investigated in [1]. Analogous definitions of an upper porosity
of µ were studied in [4]. For our investigations, the key notion is given
in the following definition.

Definition 3.1. We denote

γ(µ, x, r, ε) := sup{s > 0 : there is z such that %(x, z) + s ≤ r

and µ(B(z, s)) ≤ εµ(B(x, r))}
and we define the upper porosity of the measure µ at a point x by

por(µ, x) := lim
ε↓0

lim sup
r↓0

γ(µ, x, r, ε)

r
.

Note that 0 ≤ por(µ, x) ≤ 1 for all x. (Recall that sup ∅ = 0.)
The following simple fact will be used in the sequel without any

special reference.

Proposition 3.2. The function x → por(µ, x) is Borel measurable.

Proof. Since the functions ε → γ(µ, x, r, ε) are clearly non-decreasing
on (0,∞),

por(µ, x) := lim
k→∞

lim
l→∞

sup{γ(µ, x, r, 1/k)

r
: 0 < r < 1/l}.

Thus it suffices to check that for each fixed k, l ∈ N the function x →
sup{γ(µ,x,r,1/k)

r
: 0 < r < 1/l} is lower semi-continuous, which is an easy

task. �

Recall that µ is said to satisfy the doubling condition at x if there
are r0 > 0 and c < ∞ such that µ(B(x, 2r)) ≤ cµ(B(x, r)) whenever
0 < r < r0. This may be equivalently defined by replacing 2 by any
number greater than one. Another equivalent form is obtained by fixing
an arbitrary 0 < η < 1 and requiring that there are r0 > 0 and ε > 0
such that µ(B(x, ηr)) ≥ εµ(B(x, r)) for 0 < r < r0.

Note that by the above definitions the doubling condition is satisfied
at every point not belonging to the support of µ and por(µ, x) = 1 at
such points.



POROSITY, σ-POROSITY AND MEASURES 7

Proposition 3.3. Let x be in the support of µ. Then the following
statements are equivalent

(i) por(µ, x) > 1/2,
(ii) por(µ, x) = 1,
(iii) µ does not satisfy the doubling condition at x.

Proof. Suppose that por(µ, x) > 1/2 and find an η > 0 such that
por(µ, x) > η + 1/2. Then for every 0 < ε < 1 there are an arbitrarily
small r > 0, z ∈ X and s > (η + 1/2)r such that %(x, z) + s ≤
r and µ(B(z, s)) ≤ ε

2
µ(B(x, r)). Since the above inequalities imply

%(x, z) < r/2 − ηr, we obtain B(x, ηr) ⊂ B(z, s), and consequently
0 < µ(B(x, ηr)) ≤ ε

2
µ(B(x, r)) < εµ(B(x, r)). Hence µ does not satisfy

the doubling condition at x.
Suppose now that µ does not satisfy the doubling condition at x and

fix 0 < η < 1. Then for every ε > 0 there are arbitrarily small r > 0
such that µ(B(x, ηr)) < εµ(B(x, r)). For these r we get (with z = x)
that γ(µ, x, r, ε) ≥ ηr, which shows that por(µ, x) ≥ η. Since 0 < η < 1
was arbitrary, we have por(µ, x) = 1. �

Proposition 3.4. For every ε > 0 there is a closed strongly porous
subset S of the set P := {x : por(µ, x) > 0} such that µ(P \ S) < ε.

Proof. Find p > 0 such that µ{x ∈ P : por(µ, x) ≤ 2p} < ε/2 and
denote P0 := {x : por(µ, x) > 2p}. Let ηj > 0 be such that

∑∞
j=1 ηj <

ε/4.
We note that for each x ∈ P0, η > 0 and δ > 0 there is a 0 < r < δ/2

such that, for some z ∈ X we have %(z, x)+2pr ≤ r and µ(B(z, 2pr)) ≤
ηµ(B(x, r)). Letting s = 2r, we infer that P0 is covered by the family

{B(z, s) : s < δ and µ(B(z, ps)) ≤ ηµ(B(z, s))}.

Hence for each j = 1, 2, . . . we may use Theorem 2.8.4 from [2] to find
a disjoint family B(zi, si) (i ∈ Ij) such that P0 ⊂

⋃
i∈Ij

B(zi, 5si), and
si < 1/j and µ(B(zi, psi)) ≤ ηjµ(B(zi, si)) for each i ∈ Ij. Denote
Gj :=

⋃
i∈Ij

B(zi, psi). Since B(zi, si), (i ∈ Ij) are disjoint balls, the set
Ij is countable and

µ(Gj) =
∑
i∈Ij

µ(B(zi, psi)) ≤ ηj

∑
i∈Ij

µ(B(zi, si)) ≤ ηj.

Let G =
⋃∞

j=1 Gj. Then µ(G) ≤ ∑∞
j=1 ηj < ε/4 and, since 1/j → 0,

p(P0\G) ≥ p/(5+p). Hence by Theorem 2.2(i) there is a closed strongly
porous subset S of P0 such that µ((P0 \G) \ S) < ε/4. Clearly, S has
the required properties. �
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Proposition 3.5. Every σ-porous subset of the set {x : por(µ, x) <
1/2} has µ measure zero.

Proof. If por(µ, x) < 1/2, then x belongs to the support of µ and thus
by Proposition 3.3 there exist k, l ∈ N such that

(3.1) µ(B(x, r)) ≥ 1

k
µ(B(x, 5r)) for r <

1

l
.

Let n ∈ N be such that por(µ, x) < 1/2 − 1/n and find p ∈ N and
q ∈ N such that

(3.2)
1

r
γ(µ, x, r, 1/p) <

1

2
− 1

n
for each r <

1

q
.

Thus, denoting by A(k, l, n, p, q) the set of those x ∈ X for which (3.1)
and (3.2) hold, we have

A := {x : por(µ, x) < 1/2} ⊂
⋃
{A(k, l, n, p, q) : k, l, n, p, q ∈ N}.

Now suppose that a σ-porous set P ⊂ A is given. By Theorem 2.2(iii)
there is a σ-strongly porous set Q ⊂ P with µ(P \ Q) = 0. Since
each set Q∩A(k, l, n, p, q) is σ-strongly porous, it is sufficient to prove
that, for arbitrary fixed k, l, n, p, q, each strongly porous subset S of
A(k, l, n, p, q) is µ-null. Suppose to the contrary that µ∗(S) > 0, where
µ∗ is the outer measure determined by µ. Choose an open set G ⊃ S
such that µ(G) < µ∗(S)(1 + 1

pk
). Since S is strongly porous, we can

assign to each x ∈ S numbers 0 < rx < min(1/l, 1/q), 0 < sx and a
point zx ∈ X such that

B(x, rx) ⊂ G, ρ(x, zx) + sx ≤ rx, B(zx, sx) ∩ S = ∅ and
sx

rx

>
1

2
− 1

n
.

By (3.2) we then obtain

µ(B(zx, sx)) >
1

p
µ(B(x, rx)).

Using Theorem 2.8.4 from [2] there is a subset {xi : i ∈ I} of S such
that the balls B(xi, rxi

) are disjoint and S ⊂ ⋃
i∈I B(xi, 5rxi

); clearly I
is countable. Denoting D :=

⋃
i∈I B(zxi

, sxi
), we have

µD =
∑
i∈I

µ(B(zxi
, sxi

)) ≥ 1

p

∑
i∈I

µ(B(xi, rxi
))

≥ 1

pk

∑
i∈I

µ(B(xi, 5rxi
)) ≥ 1

pk
µ∗(S)

and therefore, since D is a µ-measurable subset of G and D ∩ S = ∅,
we obtain µG ≥ (1 + 1

pk
)µ∗(S), which is a contradiction. �
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We now summarize the previous results on porosity of measures into
the following theorem.

Theorem 3.6. Let µ be a Borel regular probability measure on a sep-
arable metric space X and let Sp := {x : por(µ, x) = p}. Then the
following statements hold.

(i) Sp = ∅ for each 1/2 < p < 1.
(ii) S1 = N ∪ (X \ spt(µ)) where N is the set of those x at which µ

does not satisfy the doubling condition.
(iii) µ(X \ (S0 ∪ S1/2 ∪ S1)) = 0.
(iv) There exists a σ-strongly porous set A ⊂ S1/2 ∪ S1 such that

µ((S1/2 ∪ S1) \ A) = 0.
(v) Every σ-porous subset of S0 has µ measure zero.

Proof. The statements (i) and (ii) follow from Proposition 3.3. Using
(i), we have that B := X \ (S0 ∪ S1/2 ∪ S1) = {x : 0 < por(µ, x) <
1/2}. Proposition 3.4 implies that there is a σ-porous set P ⊂ B such
that µ(B \ P ) = 0. By Proposition 3.5 we have µ(P ) = 0, hence
µ(B) = 0, which is (iii). The statements (iv) and (v) follow directly
from Propositions 3.4 and 3.5, respectively. �

This Theorem immediately implies a generalization, with a simple
proof, of the results of [4] on attainable values of the following porosities
of measures:

por(µ) := inf{s : por(µ, x) ≤ s, for µ-a.e. x ∈ X},
p(µ) := sup{p(A) : A ⊂ X with µ(A) > 0},

p∗(µ) := inf
δ>0

sup{p(A) : A ⊂ X with µ(A) > 1− δ},

and
p∗∗(µ) := sup{p(A) : A ⊂ X with µ(A) = 1}.

The following statement easily follows from Theorem 3.6.

Theorem 3.7. Let µ be a Borel regular probability measure on a sepa-
rable metric space X. Then por(µ) can attain only the values 0, 1

2
and

1, and each of p(µ) and p∗(µ) can attain only the values 0 and 1
2
.

Moreover,

0 ≤ p(spt(µ)) ≤ p∗∗(µ) ≤ p∗(µ) ≤ p(µ) ≤ por(µ) ≤ 1.

If µ satisfies the doubling condition µ-a.e., then por(µ) = p(µ) ≤ 1
2
,

in the opposite case p(µ) = 1
2

and por(µ) = 1.

The following result on porosity decomposition of measures is an
immediate consequence of Theorem 3.6. We also give a simple inde-
pendent proof whose (minor) advantage is that it works directly in
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non-separable spaces and can therefore be used to deduce some of the
statements of Theorem 3.7 for non-separable spaces. Note however,
that some of these statements may fail: see Remark 4.7 or observe that
the support of µ may be undefined.

Proposition 3.8. Let µ be a Borel regular probability measure on a
metric space X. Then there is a σ-strongly porous Borel set S ⊂ X
such that every σ-porous subset of X \ S has µ measure zero.

Proof. Put

α := sup{µ(S) : S is a σ − strongly porous set}.
For each natural number n use Lemma 1.4 to choose a Borel σ-strongly
porous set Sn with µ(Sn) > α − 1/n. Then S :=

⋃∞
n=1 Sn is a Borel

σ-strongly porous set and µ(S) = α. To prove our assertion consider a
σ-porous set P ⊂ X \ S. By Theorem 2.2(iii) find a σ-strongly porous
set T ⊂ P such that µ(P \T ) = 0. Then α ≥ µ(S∪T ) = µ(S)+µ(T ) =
α + µ(T ), so µ(P ) = µ(T ) = 0. �

Remark 3.9. Note that in the case µ(S) = 0 we have that µ is ab-
solutely continuous with respect to σ-porous sets and p∗(µ) = p(µ) = 0,
in the case 0 < µ(S) < 1 we have that p∗(µ) = 0 and p(µ) = 1/2 and
in the case µ(S) = 1 we have that p∗(µ) = p(µ) = 1/2.

4. Examples

We finish with several easy examples. We first show that all the
alternatives from Remark 3.9 may occur; in particular the inequality
p∗(µ) ≤ p(µ) can be strict.

Example 4.1. Let λ be the Lebesgue measure on [0, 1] and let ν be
the probability measure on R given by ν{0} = 1. The case µ(S) = 0 of
Remark 3.9 holds for µ = λ, the case 0 < µ(S) < 1 holds for µ = λ+ν

2
and the case µ(S) = 1 holds for µ = ν.

Examples 4.2 and 4.3 show that the inequalities p∗∗(µ) ≤ p∗(µ) and
p(spt(µ)) ≤ p∗∗(µ) can be strict.

Example 4.2. Let µ be the probability measure on R given by µ{ 1
k
} =

µ{− 1
k
} = 2−(k+2) and µ{0} = 2−1. The set S = {0} ∪ {±1/k : k =

1, 2, . . . } does not have any proper subset with full µ-measure. Since
p(S, 0) = 0 we get p∗∗(µ) = 0. The set Sk = S\(0, 1

k
] satisfies µ(Sk) =

1− 2−(k+1) and p(Sk) = 1
2
. Thus p∗(µ) = 1

2
.

Example 4.3. Let µ be the probability measure on R given by µ{ 1
k
} =

µ{− 1
k
} = 2−k−1. Then p(spt(µ)) = 0 and p∗∗(µ) = 1

2
.
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Finally, the following example shows that p∗∗(µ) (on R) does not
have a dichotomic behaviour.

Example 4.4. Let a > 1 and let µ be the probability measure on R
given by µ{0} = 2−1 and µ{a−k} = µ{−a−k} = 2−(k+2). It is easy to
see that the set S = {0}∪{±a−k : k = 1, 2, . . . } satisfies p(S, 0) = a−1

2a
.

Since S does not have any proper subset of full µ-measure we get that
p∗∗(µ) = p(S) = p(S, 0) = a−1

2a
.

The following example shows that each of the sets S0, S1/2, S1 of
Theorem 3.6 may have positive measure.

Example 4.5. Let ν be the probability measure on R given by ν{0} =
1, ω a probability measure on [2, 3] such that the set N of those x ∈
[2, 3] at which ω does not satisfy the doubling condition has full ω
measure (see, for example, [1, Example 4]) and let µ = ν+ω+λ

3
, where

λ is as in Example 4.1. Then S0 ⊃ (0, 1), S1/2 ⊃ {0, 1} and S1 ⊃ N ,
so all these sets have positive µ measure.

Our next example points out that the key Proposition 2.1 does not
hold without the finiteness assumption.

Example 4.6. Whenever A is a countable subset of a metric space
X which is porous but not strongly porous (for example the set A
and metric space X from Remark 1.2(iv)), and µ(E) is the number of
elements of E ∩A, then µ is a σ-finite Borel regular measure on X for
which there is no strongly porous set S with µ(A \ S) < 1.

Remark 4.7. The separability of the space X in Section 3 may be
replaced by requiring, for example, that µ be a Radon measure but
cannot be completely removed. To illustrate this, assume existence
of a measurable cardinal and consider a discrete metric space X on
which there is a probability measure µ defined on all subsets such that
singletons have measure zero. Then por(µ, x) = 1 for all x ∈ X but
the statement of Proposition 3.4 fails since X contains no non-empty
strongly porous subset. Moreover, p(µ) = 0 and so the last statement
of Theorem 3.7 fails as well.

Remark 4.8. We should also point out that our results have no anal-
ogy for lower porosity. Indeed, for this it suffices to take any measure
on R supported by a lower porous set such that every set of positive
measure has positive Hausdorff dimension. (For example, consider the
Cantor measure.) Then there is no strongly lower porous set of positive
measure since every strongly lower porous subset of R has Hausdorff
dimension zero. (See [5] or, for analogous results concerning porosities
of measures, [3].)
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