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ABSTRACT

We analyze under what conditions the best Lp(�)-linear �ttings of the
action of a mapping f on small balls give reliable estimates of the tangent
map Df: We show that there is an inverse relationship between the condi-
tions on the regularity, in terms of local densities, of the measure � and the
smoothness of the mapping f which are required to ensure the goodness of
the estimates. The above results can be applied to the estimation of tangent
maps in two empirical settings: from �nite samples of a given probability
distribution on IRn and from �nite orbits of smooth dynamical systems. As
an application of the results of this paper we obtain su¢ cient conditions on
the measure � to ensure the convergence of Eckmann and Ruelle algorithm
for computing the Liapunov exponents of smooth dynamical systems.
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1 Introduction.

In this paper we provide a rigorous basis to a standard method used in
numerical analysis for estimating tangent maps from data sets distributed
according to a given probability measure (see Remark 7). This method is
based upon the estimates of the tangent map Df(a) of a mapping f at a
point a by best Lp-linear estimates of the action of the mapping f on small
balls centered at a:
This is a relevant problem for the theory of di¤erentiation with respect

to measures in IRn; and also from the point of view of smooth dynamical
systems. In the later case a crucial question is how to determine the Lia-
punov exponents from an orbit of the system. The Liapunov exponents are
the asymptotic exponential rates of convergence or divergence of orbits with
nearby initial conditions. They characterize and quantify the chaotic behav-
iour. The Eckmann and Ruelle algorithm (see [5]) is one of the algorithms
most often used for the numerical estimation of the Liapunov exponents. It
is based upon the Lp-estimation of the tangent maps along a given orbit of
the system. As an application of the results in this article, we are able to
solve the open problem of �nding under what conditions the Liapunov expo-
nents can be approximated, up to an arbitrary degree of accuracy, using the
mentioned algorithm (see [8]). These conditions (see Theorem 2) are quite
natural in smooth dynamical systems theory and they cover many interesting
cases (see Remark 6 and [1]).

We now formulate the problem solved in this article.

Problem.

Assume that f is a smooth real function on M � IRn: Assume also that
� is a probability Radon measure onM; and let a be a given point inM: Let
B(a; r) denote the closed ball, in the Euclidean metric, of radius r centered
at a: We de�ne on the set Ln(IRn; IR) �Ln of linear forms from IRn on IR;
the functional

Ap;r(�) =
�

1

�(B(a; r))

Z
B(a;r)

jf(y)� f(a)� �(y � a)jp d�(y)
�1=p

: (1)
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We adopt the notation k�k2 for the usual norm of linear maps, i.e. k�k2 =
maxfj�vj : jvj2 = 1; v 2 IR

ng where j�j2 denotes the Euclidean norm.

We ask under what conditions on p; f and �
A) There exists a unique linear form �r 2 Ln which minimizes Ap;r and
B) �r tends to the tangent map Df(a) when r tends to zero.

The answer to these questions, in particular to question B), turns out to
be non trivial, due to the fact that the measure � might exhibit a complex
local structure, as it is the case when we think of � as the invariant measure
of a dynamical system. Consider, for instance, the case when the measure
� is concentrated on a hyperplane. Then the functional Ap;r does not give
any information on how alike the action of f and of linear maps out of the
hyperplane are, and the restriction of a linear map to a hyperplane does not
determine the linear map. As we will see below, di¢ culties also arise when
the measure � is concentrated near hyperplanes on arbitrarily small balls,
making possible the existence of tangent measures (see section 2 for a de�ni-
tion) of � at a concentrated on hyperplanes. Notice that this case is relevant
for the invariant measure at a dynamics in a smooth submanifold of IRn:

We show below that the key idea to establish the convergence of �r to
Df(a) when r tends to zero is to obtain a relationship between the usual
norm and the Lp(� jB(a; r))-norm of the linear maps (Df(a)��r):We prove
that under suitable conditions, there is a constant � 2 [0; 1) such that �-a:e
a 2M; and any � 2 Ln;

k � k2�
K

r1+�

264 1

�(B(a; r))

Z
B(a;r)

j�(y � a)jp d�(y)

375
1=p

(2)

holds for small r; where K is a constant dependent on a: Then, applying the
last inequality to the linear map (Df(a) � �r); and using the fact that �r
minimizes the functional Ap;r; we get

k Df(a)��r k2�
K

r1+�

264 1

�(B(a; r))

Z
B(a;r)

j(Df(a)� �r)(y � a)j
p d�(y)

375
1=p

�
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K

r1+�

264 1

�(B(a; r))

Z
B(a;r)

jf(y)� f(a)� �r(y � a)j
p d�(y)

375
1=p

+

K

r1+�

264 1

�(B(a; r))

Z
B(a;r)

jf(y)� f(a)�Df(a)(y � a)jp d�(y)

375
1=p

�

2K

r1+�

264 1

�(B(a; r))

Z
B(a;r)

jf(y)� f(a)�Df(a)(y � a)jp d�(y)

375
1=p

; (3)

and the convergence can be obtained if the degree of di¤erentiability of f is
higher than 1 + �:

In Theorem 1 (section two) we show that, under an assumption of strong
local regularity of the measure �; for any sequence frig # 0 there is a sub-
sequence frijg such that (2) holds for � = 0: This fact allows us to obtain
the required convergence for pointwise di¤erentiable functions. In Theorem
2 (section three), we relax the assumption of local regularity on the measure
and �nd that (2) holds for a positive � and any r < r0; where r0 is a con-
stant dependent on a; and we also get the convergence for f 2 C1+" provided
" > �: In the statements of Theorems 1 and 2 we stress the role played by
inequality (2), which we think useful in its own right.
In the remaining part of this section we analyze the problem of existence

and uniqueness of the best Lp-linear �ttings and prove two lemmas needed
later.

Existence and uniqueness of the best Lp-linear estimate.

We now consider a slightly more general problem than the one we will treat
later on. We are concerned with the existence and uniqueness of the best
Lp-linear �tting of a real function f 2 Lp(�), where � is a Radon probability
measure on a bounded subset M � IRn and p 2 (1;1): We denote by kfkp
the norm of f in the metric space Lp(�): For a 2M we de�ne the functionals
A : Ln! IR and h : Ln! IR by

A(�) = kf � � � (f � �)(a)kp ; (4)
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h(�) = k� � �(a)kp : (5)

If there exists a unique � 2 Ln which minimizes A we say that � is the best
linear estimate in Lp(�)-norm of f at a.

Notice that (4) coincides with (1) when the considered measure is � =
1

�(B(a;r))
� jB(a; r) (throughout the text � jB(a; r) denotes the restriction of

the measure � to the ball B(a; r)):

Remark 1 In this paper we solve problems A) and B) above for real func-
tions de�ned on M � IRn. Let us see how this also allows us to solve the
problem for a vectorial �eld f :M ! IRm: In this case we estimate the tan-
gent map of f at a as the linear mapping � which minimizes the functional

A(�) =
�Z

M

�
jf(y)� f(a)� �(y � a)jp

�p
d�(y)

�1=p
de�ned now on the set Ln;m of linear maps from IRn into IRm where j�jp
denotes the p-norm in IRm:We assume that jf jp 2 Lp(�). If fi and �i denote
the i-th coordinate of f and � respectively, then (A(�))p =

Pm
i=1 (Ai(�))

p ;
where for 1 � i � m;

(Ai(�))p =
Z
M

jfi(y)� fi(a)� �i(y � a)j
p d�(y):

Since the minimum of A is attained at the linear map that minimizes Ap and
this minimum is clearly attained by a linear mapping � whose i-th coordinate
�i minimizes (Ai)p; or equivalently Ai, it follows that the problem for vectorial
�elds can be decomposed into the corresponding problems for their coordinate
real functions.

In the next lemma we obtain the existence and uniqueness of the best Lp-
linear �tting. We restrict our attention to the set P(M) of Radon probability
measures such that �(H) < 1 for all hyperplanes H:

Lemma 1 Let M be a bounded subset of IRn; a 2M; � 2 P(M); p 2 (1;1)
and S = f� 2 Ln : k � k2= 1g: Then
(i) There is a T 2 S where the minimum value of h on S is attained and
h(T ) > 0:

(ii) k�k2 �
h(�)
h(T )

; for all � 2 Ln:
(iii) If f 2 Lp(�); there is a unique � 2 Ln where the minimum of A on Ln
is attained.
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Proof. The �rst part of statement (i) follows from the continuity of the func-
tional h on the compact set S: The assumption � 2 P(M) guarantees that
h (T ) > 0; which together with the fact h (�) � k�k2 h(T ) for any � 2 Ln;
give statement (ii). Let � := inf�2Ln A(�) and R :=

�+A(0)
h(T ) : Then A(�) > �

if k�k2 > R; so that the continuous functional A attains its minimum on the
compact set f� 2 Ln : k � k2� Rg: The uniqueness of such minimum can be
obtained from the strict convexity of the normed space Lp(�) for p 2 (1;1)
(see [11] and [4]) and from the fact that � 2 P(M):

In section 2, we will need the following lemma.

Lemma 2 Let M be a bounded subset of IRn and let f�ng be a sequence of
measures in P(M) which is weakly convergent to the measure � (�n

w
! � for

the sequel) with � 2 P(M): For a 2M and p 2 (1;1); let fhng and h be the
functionals de�ned by (5) for the measures f�ng and � respectively, and let
Tn and T be the linear forms of S where the minima of hn and h are attained.
Then limn!1 hn(Tn) = h(T ):

Proof.
The existence of fTng and T is guaranteed by Lemma 1. Since Tn mini-

mizes hn on S, we have that hn(Tn) � hn(T ) which, together with the weak
convergence, gives lim supn!1 hn(Tn) � h(T ). Using the de�nition of weak
convergence, we see that the sequence fhng is pointwise convergent to h on S.
Furthermore, it is easy to prove that fhng is also an equicontinuous sequence
on S which proves the uniform convergence of fhng to h on S. Hence, for ar-
bitrarily small " and su¢ ciently large n, hn(Tn) > h(Tn)� " � h(T )� ": This
shows that lim infn!1 hn(Tn) � h(T ). Therefore limn!1 hn(Tn) = h(T ):

2 Tangent measures and the convergence of
the best Lp-linear estimates.

Let � be a Radon probability measure on M � IRn; a 2 IRn; r > 0; and
let �r := 1

�(B(a;r))
� jB(a; r): In this section we obtain the convergence of

the best linear �ttings in Lp(�r)-norm of f at a to Df(a) under a strong
regularity assumption on the local behaviour of � (see Theorem 1). The
tangent measures of � at the point a are one of the most useful tools for the
study of the local structure of � at a: They are weak limits of sequences of
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measures de�ned as suitable normalizations of measures obtained by blowing
up the measure � by sequences of expansive homotheties centered at a: That
is, � is a tangent measure of � at a 2 IRn if � is a non-zero Radon measure
on IRn and if there exist sequences frig and fcig of positive numbers such
that ri # 0 and

ci'a;ri#�
w
! � as i!1

where 'a;ri is the homothecy given by 'a;ri(x) =
(x�a)
ri

and 'a;ri#� is the
measure induced by 'a;ri ; that is 'a;ri#�(A) = �(riA + a); A � IRn: The
set of all such tangent measures is denoted by Tan(�; a) (see [7] and [9] for
details on tangent measures). In Theorem 1 we use the properties (P1) and
(P2) given below (see [7]).

(P1) Let a 2 IRn: If the doubling condition

lim sup
r#0

�(B(a; 2r))

�(B(a; r))
= K <1 (6)

holds, then every sequence frig # 0 contains a subsequence frijg such
that the measures 1

�(B(a;rij ))
'�;rij#� converge weakly to a tangent mea-

sure of � at a:

Let 0 � s < 1; the upper and lower s-densities of the measure � at a
point a 2 IRn are respectively de�ned by

��s(�; a) = lim sup
r#0

�(B(a; r))

(2r)s
and �s�(�; a) = lim inf

r#0

�(B(a; r))

(2r)s
:

(P2) Let s be a positive number, and let A be the set of points a 2 IRn such
that

0 < �s�(�; a) � ��s(�; a) <1 (7)

holds. Then, for �-a:e: a 2 A and every � 2 Tan(�; a) there is a
positive number c such that

tcrs � �(B(x; r)) � crs; for x 2 spt(�); 0 < r <1 (8)

where t = �s�(�;a)
��s(�;a) ; and spt(�) denotes the support of the measure �:
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We now recall several de�nitions used in the proof of Theorem 1.

Given X � IRn and � > 0; a collection of balls fBi : i 2 INg is a �-
covering of the set X if X �

S1
i=1Bi and d(Bi) � � where d(�) stands for

diameter. We de�ne the s-dimensional outer Hausdor¤ measure Hs
� of a set

X by Hs
�(X) = inf f

P1
i=1(d(Bi))

sg where the in�mum is taken over the set
of �-coverings of X: The s-dimensional Hausdor¤ measure of X is given by
Hs(X) = lim�#0Hs

�(X): The Hausdor¤ dimension of X is the threshold value

dim(X) = supft : Ht(X) > 0g = infft : Ht(X) < +1g;

and the Hausdor¤dimension of a measure � is de�ned by dim� = inffdim(X) :
�(X) > 0g:

Let f : M � IRn ! IR and a 2 M: We say that f is di¤erentiable at a
if there is a linear map Df(a) 2 Ln such that for any " > 0 there is a � > 0
satisfying

jf(y)� f(a)�Df(a)(y � a)j � " jy � aj2 (9)

for all y 2M \B(a; �): Notice that this condition holds at every point of the
domain of a di¤erentiable function de�ned on an open set (see also Remark
2).
The next theorem gives su¢ cient conditions for the convergence to the

di¤erential of the best Lp-linear �ttings on small balls in terms of the above
local densities.

Theorem 1 Let � be a Radon probability measure on M � IRn such that
(7) holds for �-almost every a 2M with s > n� 1 and let p 2 (1;1): Then
(i) For �-a:e: a 2 M; and any sequence frig # 0; there are a subsequence
frijg and a positive constant K such that for any � 2 Ln

k � k2�
K

rij

264 1

�(B(a; rij))

Z
B(a;rij )

j�(y � a)jp d�(y)

375
1=p

(10)

holds for any j 2 IN:
(ii) Let f be a real function de�ned on M; di¤erentiable �-almost every
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a 2 M: Let �r = 1
�(B(a;r))

� jB(a; r) and let �r be the best linear estimate in
Lp(�r)-norm of f at a: Then there exists a unique Df(a) satisfying (9) and

lim
r#0
�r = Df(a)

for �-almost every a 2M:

Proof.
(i) Let A be the set of points where (7) holds. It is easy to see that (7)
implies (6). Then, property (P1) ensures that for every a 2 A and for every
sequence frig # 0; there is a subsequence, which for simplicity we also denote
by frig; such that

1

�(B(a; ri))
'a;ri#�

w
! � 2 Tan(�; a): (11)

Property (P2) gives a set B � A; with �(B) = 1; such that for a 2 B
the inequalities in (8) hold for the measure � given in (11). Then we have
that lim infr#0

log �(B(x;r))
log r

� s for x 2 spt(�); which shows (see [14]) that
dim � > n� 1: Thus �(@B(0; 1)) = 0 which, together with (11), easily gives

(
1

�(B(a; ri))
'a;ri#�) j B(0; 1)

w
! � j B(0; 1); (12)

and hence � jB(0; 1) 2 P(B(0; 1)): By Lemma 1 there is a T 2 S which
minimizes on S the functional given by

h(�) =
�Z

B(0;1)

j�yjp d�(y)
�1=p

;

and h(T ) > 0 holds for such T:
By arguments similar to those given above (see [10]) for �; it can be

shown that (7) implies dim� � s > n� 1: This proves that for a 2 B; �ri =
1

�(B(a;ri))
� jB(a; ri) 2 P(B(a; ri)): Then, by Lemma 1, there is a fTrig 2 S

which minimizes on S the functional fhig given by

hi(�) =

�
1

�(B(a; ri))

Z
B(a;ri)

j�(y � a)jp d�(y)
�1=p

=

ri

�
1

�(B(a; ri))

Z
B(0;1)

j�yjp d'a;ri#�(y)
�1=p

:
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By Lemma 2, together with (12), we obtain that limi!1
1
ri
hi(Tri) = h(T ), so

that there is an i0 such that

hi(Tri) � rih(T )=2; for i > i0: (13)

By part (ii) of Lemma 1, together with (13), we have that for any � 2 Ln;

k�k2 �
hi(�)
hi(Tri)

� 2

h(T )ri
hi(�)

holds for i > i0; which gives (10) for this subsequence taking K = 2
h(T ) :

(ii) Let C be the set of points at which f is di¤erentiable, a 2 B \ C; and
frig # 0: Given (i) above, there is a subsequence, which for simplicity we also
denote by frig; such that (10) holds. Since we also have that f 2 Lp(�ri) for i
large enough, Lemma 1 can be applied to obtain the existence and uniqueness
of the best linear �tting in Lp(�ri)-norm of f at a: We denote it by �ri : Let
Df(a) 2 Ln satisfy (9). We now see that limi!1 �ri = Df(a): Using (10)
for � = �ri �Df(a); and taking into account equality (3) together with the
fact that �ri is the best linear estimate in L

p(�ri)-norm of f at a; we obtain



�ri �Df(a)

2 � K

ri

264 1

�(B(a; ri))

Z
B(a;ri)

��(�ri �Df(a))(y � a)��p d�(y)
375
1=p

�

2K

ri

264 1

�(B(a; ri))

Z
B(a;ri)

jf(y)� f(a)�Df(a)(y � a)jp d�(y)

375
1=p

: (14)

Using (9) we see that for any " there is an i1 such that

jf(y)� f(a)�Df(a)(y � a)j � " jy � aj2
2K

, for y 2M \B(a; ri1): (15)

Let i� be an integer such that ri < ri1 for all i > i
�: Then, using (14) and (15),

�ri �Df(a)

2 � " holds for i > i�; which proves that limi!1 �ri = Df(a):

We have proved that, given a sequence frig # 0; there exists a subse-
quence frikg such that the result holds for this subsequence. This proves
that limr!0 �r = Df(a) and it also gives the uniqueness of the mapping
Df(a) satisfying (9).
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3 Convergence of the best Lp-linear estimates
for smoother functions.

In the previous section we have required a strong degree of local regularity in
the measure. This implies that, for �-almost every point a 2M; all tangent
measures � 2 Tan(�; a) have a Hausdor¤ dimension greater than n � 1; so
that they are not concentrated on hyperplanes. The assumptions that we
shall impose in this section permit the existence of tangent measures concen-
trated on hyperplanes. However, they imply a low speed of concentration of
� near any hyperplane on small balls. It allows us to obtain the convergence
of the best Lp-linear �ttings for smoother functions.

The next lemma states a relationship between the usual and the Lp(�r)-
norm of any linear mapping � with �r = 1

�(B(a;r))
� jB(a; r) . In order to obtain

it, we have to impose that there is a �xed proportion of the measure of the
ball B(a; r) outside a strip around any hyperplane H through a:

Let H be a hyperplane through the origin and let 0 < � < 1: We denote
by H� and W� the sets given by

H� = B(0; 1) \
[
x2H

B(x; �) and WH
� = B(0; 1) n H�:

Lemma 3 Let � be a Radon probability measure on M � IRn and a 2 M
such that there are positive constants r0; � and d with the property that for
every hyperplane H

�(a+ r0W
H
� ) > d�(B(a; r0)) (16)

holds. Then, for p 2 (1;1) and all � 2 Ln; � 6= 0;

k � k2<
1

d1=pr0�

264 1

�(B(a; r0))

Z
B(a;r0)

j�(y � a)jp d�(y)

375
1=p

: (17)

Proof. Let � 2 Ln with � 6= 0 and H = Ker(�): Let fe1; :::; en�1g be a
basis of H and take en 2 IRn such that jenj2 = 1 and j�enj = k�k2 : For all
x 2 WH

� ; let (x1; x2; :::; xn) be the coordinates of x in the basis fe1; e2; :::; eng
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of IRn: Then j�xj = jxnj j�enj = jxnj k�k2 > � k�k2 holds: For � = 'a;r0#�
we get "Z

WH
�

(k � k2)p d�(x)
#1=p

<
1

�

"Z
WH
�

j�xjp d�(x)
#1=p

;

and from this it follows

k � k2<
1

(�(WH
� ))

1=p�

"Z
WH
�

j�xjp d�(x)
#1=p

�

1

(�(WH
� ))

1=p�

�Z
B(0;1)

j�xjp d�(x)
�1=p

=

1

(�(a+ r0WH
� ))

1=pr0�

�Z
B(a;r0)

j�(x� a)jp d�(x)
�1=p

;

and using (16) we see that (17) holds.

We now prove that the condition given by (16) holds for �-almost every
a 2M and for any r < r0 under a weak assumption on the logarithmic local
densities of the measure �:

Lemma 4 Let � be a Radon probability measure on M � IRn such that

n� 1 < �1 < lim inf
r#0

log �(B(x; r))

log r
� lim sup

r#0

log �(B(x; r))

log r
< �2 (18)

for �-a.e. x 2 M (see Remark 6). Let � > 0 and C� = fa 2 M : there are
constants r0; K and d, all of them in the interval (0; 1] such that for each

hyperplane H and for r < r0;
�(a+rWH

Kr� )

�(B(a;r))
> d holds}. Then, for � > �2��1

�1�n+1 ;

�(C�) = 1:

Proof. We claim that C� is a �-measurable set. By (18), we know that

dim� > n� 1: From this, for any hyperplane H; it follows that �(a+rW
H
Kr� )

�(B(a;r))
is

a continuous function of a and r. Let r0; K and d be �xed constants and let
H be a given hyperplane. The set of points Cr0;2K;d;H for which the inequality

�(a+ rWH
2Kr�)

�(B(a; r))
> d (19)
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holds for any r < r0 can be expressed as a countable intersection of �-
measurable sets. Therefore, the set of points C�r0;2K;d at which inequality
(19) holds for a countable and dense set of hyperplanes is also �-measurable.
This inequality also holds at the points of C�r0;2K;d for any hyperplane if we
reduce in (19) the value of the constant K: Hence, the set Cr0;K;d where the

inequality �(a+rWH
Kr� )

�(B(a;r))
> d holds for any hyperplane H and for every r < r0 is

�-measurable. Lastly, we can express C� as a countable union of sets Cr0;K;d;
and the claim follows:

We now prove that �(C�) = 1: The following argument, due to Pertti
Mattila, is a simpli�cation of a previous and more involved argument we had
given originally as proof.

Suppose that there is a � > �2��1
�1�n+1 such that �(C�) < 1: Let E be the

set for which (18) holds. Then, for all x 2 E, there is an rx such that

r�2 � �(B(x; r)) � r�1 ; for r < rx: (20)

Let Ej = fx 2 E : rx > 1=jg: Then E =
S1
j=1Ej and there is a j such that

�(EjnC�) > 0: For �-a:e: x 2 EjnC�

lim
r!0

�(Ej \B(x; r))
�(B(x; r))

= 1 (21)

holds (see [6]). Let x 2 EjnC� satisfying (21). Then, there is an r1 such that

�(Ej \B(x; r)) >
�(B(x; r))

2
for r < r1: (22)

It is easy to see that for any r; the set Ej \ (x + rHr�) can be covered by
K� balls with radius r1+�; centered at points x1; :::; xK� in Ej \ (x + rHr�);
where

K� � Qr��(n�1) (23)

and Q is a constant depending only on n: Since x =2 C�; for any constants
r0; K and d in (0; 1]; there exist a hyperplane H and a radius r2 < r0 such
that �(x + r2WH

Kr�2
) � d�(B(x; r2)) holds. Taking K = 1; d = 1=4 and

r0 < minfr1; 1=j; (4Q)1=qg where q = �2 � �1 � �(�1 � n + 1); we get a
hyperplane H and an r2 < r0 satisfying

�(x+ r2W
H
r�2
) � �(B(x; r2))=4: (24)
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Using (23) and (20)

�(Ej \ (x+ r2Hr�2 )) �
K�X
k=1

�(B(xk; r
1+�
2 )) � Qr��(n�1)+(1+�)�12 (25)

holds, and inequalities (22), (24) and (20) give

�(Ej \ (x+ r2Hr�2 )) = �(Ej \B(x; r2))� �(Ej \ (x+ r2W
H
r�2
)) �

�(Ej \B(x; r2))� �(x+ r2WH
r�2
) > �(B(x; r2))=4 �

r�22
4
: (26)

Therefore (25) and (26) implies rq2 < 4Q; which contradicts that r2 <
minfr1; 1j ; (4Q)

1
q g:

We now prove the convergence to the di¤erential of the best Lp-linear
�ttings on small balls. In order to do this we consider the functions f :M �
IRn ! IR satisfying the following condition:

D) There are constants " and L with 0 < " < 1 and L > 0; and a set A with
�(A) = 1; such that for all x 2 A there is a linear map Df(x) 2 Ln and an
rx satisfying

jf(y)� f(x)�Df(x)(y � x)j � L (jy � xj2)
1+" ; (27)

for all y 2 B(x; rx) \M:

Remark 2 Condition D) is satis�ed for all functions f for which the Whit-
ney extension theorem hypotheses hold for a set of full measure (see [12]).
For such functions f , there is an extension F of f which is C1+"(IRn) (i.e.
F is C1(IRn) and it has Hölder continuous derivatives with exponent "):
Conversely, if f 2 C1+"(U), where U is an open set of full measure, then
condition D) holds.

Theorem 2 Let � be a Radon probability measure on M � IRn satisfying
(18) �-a:e; let � be a constant with � > �2��1

�1�n+1 and p 2 (1;1): Then,
(i) For �-a:e a 2M; there are positive constants r0 and K such that for all
� 2 Ln

k � k2�
K

r1+�

264 1

�(B(a; r))

Z
B(a;r)

j�(y � a)jp d�(y)

375
1=p

14



holds for r < r0:
(ii) Let f be a real valued function de�ned on M satisfying condition D)
for a constant " > �: Let �r = 1

�(B(a;r))
� jB(a; r) ; and let �r be the best

linear estimate in Lp(�r)-norm of f at a: Then there exists a unique Df(a)
satisfying (27) for x = a; and

k�r �Df(a)k2 = O(r"��) �-a:e: a:

Proof.
(i) The proof follows from Lemmas 3 and 4 for any a 2 C� (see Lemma 4
for the de�nition of this set).
(ii) Let E be the set where (18) holds and let a 2 E\A\C� (see conditionD)
above for the de�nition of the set A): Then, �r 2 P(B(a; r)); the hypotheses
of Lemma 1 are satis�ed and the existence and uniqueness of �r is guaranteed
for r < ra. Applying part (i) to the linear maps �r�Df(a); where Df(a) is
a linear map satisfying (27) for x = a; there exist constants r0 and K such
that

k�r �Df(a)k2 � K

r1+�

264 1

�(B(a; r))

Z
B(a;r)

j(�r �Df(a))(y � a)j
p d�(y)

375
1=p

;

for r < r0: This inequality, together with equality (3), and the fact that �r
is the best linear estimate in Lp(�r)-norm of f at a; give

k�r �Df(a)k2 �

2K

r1+�

264 1

�(B(a; r))

Z
B(a;r)

jf(y)� f(a)�Df(a)(y � a)jp d�(y)

375
1=p

; (28)

for r < r0: But f satis�es (27) for x = a which, together with (28), gives

k�r �Df(a)k2 � 2KLr"��; for r < minfr0; rag

and since " > �; we are done. This also proves that Df(a) must be unique.

Remark 3 Notice that (7) implies (18) for any �1; �2 with n � 1 < �1 <
dim� < �2: Then part (i) of Theorem 2 follows for any � > 0; and part (ii)
holds for any f 2 C1+"(U) with �(U) = 1 and " arbitrarily small.

15



Remark 4 Assumption (18) over the measure � implies that dim� � �1
and Dim� � �2; where we denote by Dim� the packing dimension of the
measure � (see [13]): Conversely, if � is an f-invariant and ergodic measure
with dim� > n � 1 and f is di¤erentiable, (18) holds for all constants �1
and �2 with n� 1 < �1 < dim� and �2 > Dim�. Theorem 2 is then proved
by imposing condition D) on f with " > Dim��dim�

dim��n+1 ; thus linking the degree
of di¤erentiability of the functions for which the answer of the problem posed
in the introduction is positive, with the di¤erence between the Hausdor¤ and
packing dimensions of the measure �: Observe that the constraint " < 1 in
condition D) implies that the hypothesis of Theorem 2 does not hold for a
measure such that Dim�� dim� � dim�� n+ 1:

Remark 5 If the dynamics is de�ned on a smooth d-dimensional submani-
fold M of IRn, condition (18) does not hold. However, taking a suitable atlas
(Ui;	i)i2IN of M; and the best linear approximation in Lp(�a jB(	a(a); r))-
norm for h := 	f(a) � f �	�1a at 	a(a) (we are denoting by (Ux;	x) a chart
of the atlas such that x 2 Ux; and by �x := 	x#�); an extension of Theorem
2 can be obtained for f 2 C1+" with " > �2��1

�1�d+1 +
�2��1
p

if we replace the
condition �1 > n�1 in (18) with �1 > d�1 (see [8] for details). This allows
us to compute the Liapunov exponents of a dynamics in a smooth manifold,
thus solving the issue of the so called spurious exponents.

Remark 6 In the case when the upper and lower logarithmic densities given
in (18) coincide and are constant �-a:e:, the measure � is said to be regular
and exact dimensional (see [3]). Eckmann and Ruelle conjectured that any
ergodic measure for a smooth dynamical system with hyperbolic behaviour
turn out regular and exact dimensional. This conjecture has been proved in [1]
for a compactly supported Borel probability measure, with non-zero Liapunov
exponents, and invariant under a C1+" di¤eomorphism of a smooth Riemann
manifold. In this case, Theorem 2 shows the convergence to the tangent map
of the best Lp-estimates.

Remark 7 The above results can be applied to the estimation of tangent
maps from data sets in two empirical settings:
a) Finite samples of a given probability distribution on IRk:
Let X1; X2; :::; Xn be independent random k-vectors de�ned on some probabil-
ity space (
;B;P) and with a common probability distribution P on IRk: Let
f be a real valued function on IRk and assume that f and P satisfy the hy-
potheses of Theorems 1 or 2. For ! 2 
; let Pn;! be the empirical probability
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measure of X1(!); X2(!); :::; Xn(!) given by

Pn;!(A) =
1

n

nX
j=1

IA(Xj(!)):

For a 2 spt(P ) and r > 0; let

�n =
1

Pn;!(B(a; r))
Pn;! jB(a; r) and � =

1

P (B(a; r))
P jB(a; r) :

Then ([2]) Pn;! w
! P for P-almost every !; and also �n w

! � for P-almost
every !; which easily gives that limn!1 �n;r = �r at P -almost every a; for
P-almost every ! , where �n;r is the best linear estimate in Lp(�n)-norm of f
at a; and �r is the best linear estimate in L

p(�)-norm of f at a: Since f and
P satisfy the hypotheses of Theorems 1 or 2, limr!0 �r = Df(a) at P -almost
every a; and then limr!0 limn!1 �n;r = Df(a) for P-almost every !:
b) Data sets from �nite orbits of smooth dynamical systems.
Let (M; f; �) be a probabilistic dynamical system composed of a state space
M � IRk; a dynamical law f : M ! M such that the state xk of the system
at time k evolves according to the equation xk+1 = f(xk); and an f-invariant
and ergodic probability measure � on M: For x 2 M; let �n;x0 be the orbital
measure, given by

�n;x0(A) =
1

n

n�1X
j=0

IA(xj):

Using an argument similar to that given above and Remark 1, we see that
if � and the coordinates of f satisfy the hypotheses of Theorems 1 or 2,
limr!0 limn!1 �n;r = Df(a) holds at �-almost every a for �-a:e: x0; where
�n;r is the best linear estimate in L

p(( 1
�n;x0 (B(a;r))

�n;x0) jB(a; r))-norm of f at
a:

Acknowledgments: We are indebted to Professor Pertti Mattila for a
shortening of the previous longer proof of Lemma 4.
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