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ABSTRACT

We analyze under what conditions the best LP(u)-linear fittings of the
action of a mapping f on small balls give reliable estimates of the tangent
map D f. We show that there is an inverse relationship between the condi-
tions on the regularity, in terms of local densities, of the measure p and the
smoothness of the mapping f which are required to ensure the goodness of
the estimates. The above results can be applied to the estimation of tangent
maps in two empirical settings: from finite samples of a given probability
distribution on IR"™ and from finite orbits of smooth dynamical systems. As
an application of the results of this paper we obtain sufficient conditions on
the measure p to ensure the convergence of Eckmann and Ruelle algorithm
for computing the Liapunov exponents of smooth dynamical systems.
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1 Introduction.

In this paper we provide a rigorous basis to a standard method used in
numerical analysis for estimating tangent maps from data sets distributed
according to a given probability measure (see Remark 7). This method is
based upon the estimates of the tangent map Df(a) of a mapping f at a
point a by best LP-linear estimates of the action of the mapping f on small
balls centered at a.

This is a relevant problem for the theory of differentiation with respect
to measures in IR", and also from the point of view of smooth dynamical
systems. In the later case a crucial question is how to determine the Lia-
punov exponents from an orbit of the system. The Liapunov exponents are
the asymptotic exponential rates of convergence or divergence of orbits with
nearby initial conditions. They characterize and quantify the chaotic behav-
iour. The Eckmann and Ruelle algorithm (see [5]) is one of the algorithms
most often used for the numerical estimation of the Liapunov exponents. It
is based upon the LP-estimation of the tangent maps along a given orbit of
the system. As an application of the results in this article, we are able to
solve the open problem of finding under what conditions the Liapunov expo-
nents can be approximated, up to an arbitrary degree of accuracy, using the
mentioned algorithm (see [8]). These conditions (see Theorem 2) are quite
natural in smooth dynamical systems theory and they cover many interesting
cases (see Remark 6 and [1]).

We now formulate the problem solved in this article.
Problem.

Assume that f is a smooth real function on M C IR". Assume also that
1 is a probability Radon measure on M, and let a be a given point in M. Let
B(a,r) denote the closed ball, in the Euclidean metric, of radius r centered
at a. We define on the set £,,(IR",IR) =L, of linear forms from IR" on IR,
the functional

Ae®) = |

1/p

! / @) - F@) = Bly— o)l duy)| . (1)
B(a,r)

pu(B(a,r))
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We adopt the notation ||3||, for the usual norm of linear maps, i.e. |||, =
max{|fv| : |v], = 1,v € IR"} where ||, denotes the Euclidean norm.

We ask under what conditions on p, f and pu
A) There exists a unique linear form 3, € £,, which minimizes A,, and
B) S, tends to the tangent map D f(a) when r tends to zero.

The answer to these questions, in particular to question B), turns out to
be non trivial, due to the fact that the measure y might exhibit a complex
local structure, as it is the case when we think of y as the invariant measure
of a dynamical system. Consider, for instance, the case when the measure
 is concentrated on a hyperplane. Then the functional A4, , does not give
any information on how alike the action of f and of linear maps out of the
hyperplane are, and the restriction of a linear map to a hyperplane does not
determine the linear map. As we will see below, difficulties also arise when
the measure p is concentrated near hyperplanes on arbitrarily small balls,
making possible the existence of tangent measures (see section 2 for a defini-
tion) of 1 at a concentrated on hyperplanes. Notice that this case is relevant
for the invariant measure at a dynamics in a smooth submanifold of IR".

We show below that the key idea to establish the convergence of 3, to
Df(a) when r tends to zero is to obtain a relationship between the usual
norm and the LP(p |B(a,r))-norm of the linear maps (D f(a)—f3,). We prove
that under suitable conditions, there is a constant o € [0, 1) such that p-a.e
a € M, and any 5 € L,

1/p

/ 1By — o) dpu(y) 2)

B(a,r)

% 1
15 ll2= 5 u(B(a,r))

holds for small r, where K is a constant dependent on a. Then, applying the
last inequality to the linear map (D f(a) — (,), and using the fact that S,
minimizes the functional A, ,, we get

1/p

K
| Df(@) =B, < =



1/p

g | W@ - s 6ol dw)| +
B(a,r)

p(Bla.1))
1/p
K 1 )
e TS / 1)1 ~DAeo P ) <
1/p
2K 1 )
= |z | @ - @ - Dr@w-aPa| . G

B(a,r)

and the convergence can be obtained if the degree of differentiability of f is
higher than 1+ o.

In Theorem 1 (section two) we show that, under an assumption of strong
local regularity of the measure p, for any sequence {r;} | 0 there is a sub-
sequence {r;; } such that (2) holds for & = 0. This fact allows us to obtain
the required convergence for pointwise differentiable functions. In Theorem
2 (section three), we relax the assumption of local regularity on the measure
and find that (2) holds for a positive o and any r < ry, where ry is a con-
stant dependent on a, and we also get the convergence for f € C**¢ provided
€ > 0. In the statements of Theorems 1 and 2 we stress the role played by
inequality (2), which we think useful in its own right.

In the remaining part of this section we analyze the problem of existence
and uniqueness of the best LP-linear fittings and prove two lemmas needed
later.

Existence and uniqueness of the best LP-linear estimate.

We now consider a slightly more general problem than the one we will treat
later on. We are concerned with the existence and uniqueness of the best
LP-linear fitting of a real function f € L”(u), where p is a Radon probability
measure on a bounded subset M C IR" and p € (1, 00). We denote by | f|[,
the norm of f in the metric space L”(u). For a € M we define the functionals
A:L,— IR and h: L,— IR by

AB) = lf =8 —=(f = B)a)l,, (4)
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h(B) = |8 = B(a)ll,- ()
If there exists a unique g € £,, which minimizes A we say that (3 is the best
linear estimate in LP(u)-norm of f at a.

Notice that (4) coincides with (1) when the considered measure is v =
M(B(a B |B(a,r) (throughout the text p|B(a,r) denotes the restriction of
the measure p to the ball B(a,r)).

Remark 1 In this paper we solve problems A) and B) above for real func-
tions defined on M C IR". Let us see how this also allows us to solve the
problem for a vectorial field f : M — IR™. In this case we estimate the tan-
gent map of f at a as the linear mapping B which minimizes the functional

@ =[[ ()~ 10— ]

defined now on the set L, ,, of linear maps from IR" into IR™ where ||
denotes the p-norm in IR™. We assume that |f|, € LP(u). If fi and B; denote
the i-th coordinate of f and [ respectively, then (A(5))" = > it, (Ai(8))",
where for 1 <i<m,

/ iy) — fila) — Bily — @)l du(y).

Since the minimum of A is attained at the linear map that minimizes AP and
this minimum is clearly attained by a linear mapping B whose i-th coordinate
B; minimizes (A;)P, or equivalently A;, it follows that the problem for vectorial
fields can be decomposed into the corresponding problems for their coordinate
real functions.

In the next lemma we obtain the existence and uniqueness of the best LP-
linear fitting. We restrict our attention to the set P (M) of Radon probability
measures such that p(H) < 1 for all hyperplanes H.

Lemma 1 Let M be a bounded subset of IR", a € M, p € P(M), p € (1,00)
and S ={B € L, : || B |l2=1}. Then

(i) There is a T € S where the minimum value of h on S is attained and
h(T) > 0.

(i) lloll, < #53, for all a € L.

(it3) If f € LP(p), there is a unique B € L,, where the minimum of A on L,
is attained.



Proof. The first part of statement (i) follows from the continuity of the func-
tional h on the compact set S. The assumption p € P(M) guarantees that
h (T') > 0, which together with the fact h (o) > ||ef], W(T ) for any a € En,

give statement (ii). Let 7 := inf,¢c,, A(a) and R := TZ(“;‘,) Then A(a) >

if |||, > R, so that the continuous functional A attains its minimum on the
compact set {a € L,, : || @ ||2< R}. The uniqueness of such minimum can be
obtained from the strict convexity of the normed space LP(u) for p € (1,00)

(see [11] and [4]) and from the fact that € P(M). &

In section 2, we will need the following lemma.

Lemma 2 Let M be a bounded subset of IR™ and let {i1,,} be a sequence of
measures in P(M) which is weakly convergent to the measure p (p,, “, p for
the sequel) with € P(M). Fora € M and p € (1,00), let {h,,} and h be the
functionals defined by (5) for the measures {iu,,} and p respectively, and let
T, and T be the linear forms of S where the minima of h,, and h are attained.

Then lim,, o hy(T3,) = h(T).

Proof.

The existence of {T,,} and T' is guaranteed by Lemma 1. Since 7}, mini-
mizes h, on S, we have that h,(7,,) < h,(T) which, together with the weak
convergence, gives limsup,,_, h,(75,) < A(T'). Using the definition of weak
convergence, we see that the sequence { h, } is pointwise convergent to h on S.
Furthermore, it is easy to prove that {h,} is also an equicontinuous sequence
on S which proves the uniform convergence of {h,} to h on S. Hence, for ar-
bitrarily small ¢ and sufficiently large n, h,(7,,) > h(T,) —e > WT) —e. This
shows that liminf,, . h,(7},) > WT). Therefore lim,, .o, h,(T,,) = h(T). B

2 Tangent measures and the convergence of
the best LP-linear estimates.

Let 1 be a Radon probability measure on M C IR", a € IR", r > 0, and
let v, := N(B(a o) /L|B(a r). In this section we obtain the convergence of
the best linear fittings in LP(v,)-norm of f at a to Df(a) under a strong
regularity assumption on the local behaviour of p (see Theorem 1). The
tangent measures of i at the point a are one of the most useful tools for the
study of the local structure of p at a. They are weak limits of sequences of
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measures defined as suitable normalizations of measures obtained by blowing
up the measure p by sequences of expansive homotheties centered at a. That
is, v is a tangent measure of p at a € IR"™ if v is a non-zero Radon measure
on IR" and if there exist sequences {r;} and {c¢;} of positive numbers such
that r; | 0 and

CiParpht 5V aS T — 00

where ¢, . is the homothecy given by ¢, (z) = @ and ¢, 4p is the

measure induced by ¢, ., that is ¢, 4u(A) = w(r:A +a), A C IR". The
set of all such tangent measures is denoted by Tan(u,a) (see [7] and [9] for
details on tangent measures). In Theorem 1 we use the properties (P1) and
(P2) given below (see [7]).

(P1) Let a € IR". If the doubling condition

 p(Bla,2r)
s Bar)

holds, then every sequence {r;} | 0 contains a subsequence {r;,} such

that the measures mgpa%# i converge weakly to a tangent mea-

=K <o (6)

sure of y at a.

Let 0 < s < 00, the upper and lower s-densities of the measure p at a
point a € IR" are respectively defined by

0™ (u,a) = lim Srliltl)) % and O3 (u,a) = lim 1rrll£ %.

(P2) Let s be a positive number, and let A be the set of points a € IR" such
that
0 <©Oi(p,a) < O™ (u,a) < oo (7)

holds. Then, for u-a.e. a € A and every v € Tan(u,a) there is a
positive number ¢ such that

ter® <v(B(x,r)) < cr’, for x € spt(v),0 <r < oo (8)

where ¢t = %, and spt(v) denotes the support of the measure v.



We now recall several definitions used in the proof of Theorem 1.

Given X C IR" and § > 0, a collection of balls {B; : i € IN} is a 6-
covering of the set X if X C (J;°, B; and d(B;) < ¢ where d(-) stands for
diameter. We define the s-dimensional outer Hausdorff measure Hj of a set
X by H3(X) =inf {>°;°,(d(B;))*} where the infimum is taken over the set
of d-coverings of X. The s-dimensional Hausdorff measure of X is given by
H*(X) = lims)o H3(X). The Hausdorff dimension of X is the threshold value

dim(X) = sup{t : H'(X) > 0} = inf{t : H'(X) < 400},

and the Hausdorff dimension of a measure p is defined by dim p = inf{dim(X) :
u(X) > 0}.

Let f: M C IR" — IR and a € M. We say that f is differentiable at a

if there is a linear map D f(a) € £, such that for any € > 0 there isa 6 > 0
satisfying

[f(y) = fla) = Df(a)(y —a)l <ely —al, 9)

for all y € M NB(a,d). Notice that this condition holds at every point of the
domain of a differentiable function defined on an open set (see also Remark
2).

The next theorem gives sufficient conditions for the convergence to the
differential of the best LP-linear fittings on small balls in terms of the above
local densities.

Theorem 1 Let i1 be a Radon probability measure on M C IR"™ such that
(7) holds for p-almost every a € M with s >n — 1 and let p € (1,00). Then
(i) For pu-a.e. a € M, and any sequence {r;} | 0, there are a subsequence
{ri,} and a positive constant K such that for any € L,

1/p

/ 1By — o) dyu(y) (10)

B(a’7rij )

K 1
e N )

holds for any j € IN.
(ii) Let f be a real function defined on M, differentiable p-almost every



a € M. Let v, = (B(m g |B(a,r) and let 5, be the best linear estimate in

LP(v,)-norm of f at a. Then there exists a unique D f(a) satisfying (9) and
lim §, = Df(a)
for p-almost every a € M.

Proof.

(i) Let A be the set of points where (7) holds. It is easy to see that (7)
implies (6). Then, property (P1) ensures that for every a € A and for every
sequence {r;} | 0, there is a subsequence, which for simplicity we also denote

by {r;}, such that
1
u(B(a,7i))

Property (P2) gives a set B C A, with u(B) = 1, such that for a € B
the inequalities in (8) hold for the measure v given in (11). Then we have
that liminf, o oerBlen) > s for x € spt(v), which shows (see [14]) that

Pa,ri# qi ve Tan(ﬂ? CL). (11)

log r
dimv > n — 1. Thus v(0B(0,1)) = 0 which, together with (11), easily gives
1
<—90ar,- :u) | B(07 1) i v | B(O’ 1)7 (12)
u(Bla,ry) 7"

and hence v |B(0,1) € P(B(0,1)). By Lemma 1 there is a T" € S which
minimizes on S the functional given by

M) = [ L laoP ) v

and h(T) > 0 holds for such T

By arguments similar to those given above (see [10]) for v, it can be
shown that (7) implies dim ¢ > s > n — 1. This proves that for a € B, v,, =
mu\B(a,m) € P(B(a,7;)). Then, by Lemma 1, there is a {T,.} € S
which minimizes on S the functional {h;} given by

hi(e) = {m /B . la(y —a)l’ du(y)] v =

1 1/17
P
L e — ayl? de,,, My} -
[u(Bm,m) /B(O,l)' " dparynly)
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By Lemma 2, together with (12), we obtain that lim; T%_hi(Tn.) = W), so
that there is an ¢ such that l

hi(T,,) > r;W(T)/2, for i > ig. (13)

By part (ii) of Lemma 1, together with (13), we have that for any 5 € L,

Mo 2
w(T) = war )

holds for ¢ > ig, which gives (10) for this subsequence taking K = ﬁ

181l; <

(ii) Let C be the set of points at which f is differentiable, « € BN C, and
{r;} 1 0. Given (i) above, there is a subsequence, which for simplicity we also
denote by {r;}, such that (10) holds. Since we also have that f € L*(v,,) for
large enough, Lemma 1 can be applied to obtain the existence and uniqueness
of the best linear fitting in L?(v,,)-norm of f at a. We denote it by /3, . Let
Df(a) € L, satisfy (9). We now see that lim; .. 3,, = Df(a). Using (10)
for 3 = 8,, — Df(a), and taking into account equality (3) together with the
fact that /3, is the best linear estimate in LP(v,,)-norm of f at a, we obtain

1/p
K 1
18, = Df @), < - mm/')l(ﬁ ~Df(a))(y —a)|"duly)| <
1/p
2K 1 )
|y / 10— =Pr@—oF )| - 10
Using (9) we see that for any e there is an 4; such that
£) ~ f(@) — DF@)y - o) < S22 fory € M Blam,).  (15)

2K

Let ¢* be an integer such that r; < r;, for all ¢ > ¢*. Then, using (14) and (15),
Hﬂn —Df(a H2 < € holds for ¢ > ¢*, which proves that lim; .. 3,, = Df(a).

We have proved that, given a sequence {r;} | 0, there exists a subse-
quence {r;_ } such that the result holds for this subsequence. This proves
that lim, 03, = Df(a) and it also gives the uniqueness of the mapping
Df(a) satisfying (9). ®
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3 Convergence of the best L’-linear estimates
for smoother functions.

In the previous section we have required a strong degree of local regularity in
the measure. This implies that, for p-almost every point a € M, all tangent
measures v € T'an(u,a) have a Hausdorff dimension greater than n — 1, so
that they are not concentrated on hyperplanes. The assumptions that we
shall impose in this section permit the existence of tangent measures concen-
trated on hyperplanes. However, they imply a low speed of concentration of
1 near any hyperplane on small balls. It allows us to obtain the convergence
of the best LP-linear fittings for smoother functions.

The next lemma states a relationship between the usual and the LP(v,)-

norm of any linear mapping 3 with v, = m i|B(a,r). In order to obtain

it, we have to impose that there is a fixed proportion of the measure of the
ball B(a,r) outside a strip around any hyperplane H through a.

Let H be a hyperplane through the origin and let 0 < § < 1. We denote
by Hs and Wy the sets given by

Hs; = B(0,1) N | J B(x,6) and W{" = B(0,1) \ Hj.

zeH

Lemma 3 Let i1 be a Radon probability measure on M C IR" and a € M
such that there are positive constants ro, 6 and d with the property that for
every hyperplane H

p(a+roWiH) > du(B(a,r)) (16)

holds. Then, for p € (1,00) and all 5 € L, B # 0,

1/p

/w(y—anpdu(y) )

B(a,ro)

1 1

|| 6 ||2< dl/pr05 M(B(G,TO))

Proof. Let § € L, with § # 0 and H = Ker(f). Let {e1,...,e,_1} be a
basis of H and take e, € IR" such that |e,|, = 1 and |Be,| = ||3]|, . For all
x € WH let (1,29, ..., 7,) be the coordinates of x in the basis {ey, €, ..., e, }
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of IR". Then |Bz| = |z,||Ben| = |zal[|Bl, > /B8]l holds. For v = ¢, . .p

we get ) )
b ' E z|P dv(z v
[/WH<||6||2> du<x>] <5[/WH|@|d<>] ,

S s

and from this it follows

1/p
H B ||2< W [/V[/(;H |5:L‘|pdl/(1:)] <

T o )] "

1 ) 1/p
(ala + W) rrd UBW )]

and using (16) we see that (17) holds. B

We now prove that the condition given by (16) holds for p-almost every
a € M and for any r < rg under a weak assumption on the logarithmic local
densities of the measure pu.

Lemma 4 Let o be a Radon probability measure on M C IR"™ such that

1 B 1 B
n—1<a <liminf BEBE) o p 08BE@T) g
710 logr rl0 logr

for p-a.e. x € M (see Remark 6). Let 0 > 0 and C, = {a € M : there are

constants ro, K and d, all of them in the interval (0,1] such that for each

hyperplane H and for r < rq, “(:LL(JZ(—‘Z/%)”) > d holds}. Then, for o > Cijﬁ:l ,
n(Co) = 1.

Proof. We claim that C, is a py-measurable set. By (18), we know that
H

dim gt > n — 1. From this, for any hyperplane H, it follows that % is

a continuous function of @ and r. Let o, K and d be fixed constants and let

H be a given hyperplane. The set of points Cy, 2,4,z for which the inequality

pla+ Wik, )
pu(Ba,r))

12

> d (19)



holds for any r < rg can be expressed as a countable intersection of u-
measurable sets. Therefore, the set of points C} ,r ; at which inequality
(19) holds for a countable and dense set of hyperplanes is also y-measurable.
This inequality also holds at the points of C} 5, for any hyperplane if we
reduce in (19) the value of the constant K. Hence, the set C,, x4 where the
inequality % > d holds for any hyperplane H and for every r < rq is
p-measurable. Lébstly, we can express C, as a countable union of sets Cy, k.4,

and the claim follows.

We now prove that u(C,) = 1. The following argument, due to Pertti
Mattila, is a simplification of a previous and more involved argument we had
given originally as proof.

Suppose that there is a 0 > 222224 such that u(C,) < 1. Let E be the

set for which (18) holds. Then, for all x € E, there is an r, such that
r®? < u(B(z,r)) <r*, for r <r,. (20)
Let E; = {z € E:7, > 1/j}. Then £ = J;2, E; and there is a j such that
w(E;\Cy) > 0. For p-a.e. v € E;\C,
o (B 0 Bl )
=0 p(B(z, 7))
holds (see [6]). Let € E;\C, satisfying (21). Then, there is an r; such that

p(B(z,r))
2
It is easy to see that for any r, the set E; N (z + rH,-) can be covered by

K* balls with radius 71*7, centered at points @1, ..., 2x~ in E; N (z + rH,o),
where

=1 (21)

w(E; N B(x,r)) > for r < ry. (22)

K* < Qrot (23)

and () is a constant depending only on n. Since = ¢ C,, for any constants
7o, K and d in (0, 1], there exist a hyperplane H and a radius 5 < ry such
that p(z + rgwgrg) < du(B(z,79)) holds. Taking K = 1, d = 1/4 and
ro < min{ry, 1/, (4Q)"9} where ¢ = ay — a; — o(a; —n + 1), we get a
hyperplane H and an ry < rg satisfying

il + W) < p(Bla, 1)) /4. (24)

13



Using (23) and (20)
K*
p(E; 0 (4 roHig)) < p(Blag, r3t7)) < Qry 7" I (95)
k=1

holds, and inequalities (22), (24) and (20) give
(B N (2 +1raHg)) = p(E; 0 B(x,72)) — p(Ej N (2 + 12 Wg)) =

a2

u(E; N Bla,r2)) = ple +raWi) > p(Ble,r)) /4 2 2= (26)

Therefore (25) and (26) implies 73 < 4@, which contradicts that r, <
1
min{r, %, (4Q)<}. m

We now prove the convergence to the differential of the best LP-linear
fittings on small balls. In order to do this we consider the functions f : M C
IR™ — IR satisfying the following condition:

D) There are constants ¢ and L with 0 < e < 1 and L > 0, and a set A with
1(A) = 1, such that for all € A there is a linear map Df(z) € £,, and an
r, satisfying

[f(y) = f@) = Df(2)(y —2)| < Ly — )", (27)
for all y € B(x,r,) N M.

Remark 2 Condition D) is satisfied for all functions f for which the Whit-
ney extension theorem hypotheses hold for a set of full measure (see [12]).
For such functions f, there is an extension F of f which is C1T=(IR") (i.e.
F is CYIR") and it has Hélder continuous derivatives with exponent ).

Conversely, if f € CY*(U), where U is an open set of full measure, then
condition D) holds.

Theorem 2 Let ;1 be a Radon probability measure on M C IR" satisfying
(18) pi-a.e, let o be a constant with o > 2222 and p € (1,00). Then,

(i) For p-a.e a € M, there are positive constants o and K such that for all
peLl,

1/p

/ 1B(y — a)|” du(y)

B(a,r)

K 1
| B [l2< rite | u(B(a,r))
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holds for r < ry.

(i) Let f be a real valued function defined on M satisfying condition D)
for a constant ¢ > o. Let v, = m;ﬂB(a, r), and let B, be the best
linear estimate in LP(v,)-norm of f at a. Then there exists a unique D f(a)

satisfying (27) for x = a, and

18, = Df(a)ll, = O(r*™7) p-a.e. a.

Proof.

(i) The proof follows from Lemmas 3 and 4 for any a € C, (see Lemma 4
for the definition of this set).

(ii) Let E be the set where (18) holds and let a« € ENANC,, (see condition D)
above for the definition of the set A). Then, v, € P(B(a,r)), the hypotheses
of Lemma 1 are satisfied and the existence and uniqueness of 3, is guaranteed
for r < r,. Applying part (i) to the linear maps 3, — D f(a), where D f(a) is
a linear map satisfying (27) for x = a, there exist constants ry and K such
that

1/p

Q/ (B, — D@y — ) duy)| .

B(a,r)

K 1
18, = Df(a)ll, < rite | w(B(a,r))

for r < r¢. This inequality, together with equality (3), and the fact that 5,
is the best linear estimate in L”(v,)-norm of f at a, give

18, = Df(a)]ly <

1/p

[ 176) = @) = Dr@y - o)l dut) | . (28)

B(a,r)

2K 1
rite | u(B(a,r))

for r < rg. But f satisfies (27) for = a which, together with (28), gives
|8, — Df(a)|l, <2KLre™?, for r < min{rg,r,}

and since € > o, we are done. This also proves that D f(a) must be unique. B

Remark 3 Notice that (7) implies (18) for any aq, ag withn —1 < oy <
dim p < ag. Then part (i) of Theorem 2 follows for any o > 0, and part (ii)
holds for any f € CY*(U) with u(U) =1 and € arbitrarily small.
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Remark 4 Assumption (18) over the measure p implies that dimpu > oy
and Dimp < «g, where we denote by Dimpu the packing dimension of the
measure i (see [13]). Conversely, if v is an f-invariant and ergodic measure
with dimp > n — 1 and f is differentiable, (18) holds for all constants o
and as withn —1 < ay < dim p and ay > Dimpu. Theorem 2 is then proved
by imposing condition D) on [ with € > %, thus linking the degree
of differentiability of the functions for which the answer of the problem posed
in the introduction is positive, with the difference between the Hausdorff and
packing dimensions of the measure pu. Observe that the constraint ¢ < 1 in
condition D) implies that the hypothesis of Theorem 2 does not hold for a

measure such that Dimpu — dim py > dimp —n + 1.

Remark 5 If the dynamics is defined on a smooth d-dimensional submani-
fold M of IR", condition (18) does not hold. However, taking a suitable atlas
(Ui, V)iein of M, and the best linear approzimation in LP(v, |B(¥Y,(a),r))-
norm for h = Wy o f oWt at ¥,(a) (we are denoting by (U, ¥,) a chart
of the atlas such that x € Uy, and by v, := VY, xu), an extension of Theorem
2 can be obtained for f € CY*¢ with ¢ > aag if we replace the
condition oy > n—11in (18) with oy > d—1 (see [8] for details). This allows
us to compute the Liapunov exponents of a dynamics in a smooth manifold,

thus solving the issue of the so called spurious exponents.

Remark 6 In the case when the upper and lower logarithmic densities given
in (18) coincide and are constant ji-a.e., the measure p is said to be reqular
and ezxact dimensional (see [3]). Eckmann and Ruelle conjectured that any
ergodic measure for a smooth dynamical system with hyperbolic behaviour
turn out regular and exact dimensional. This conjecture has been proved in [1]
for a compactly supported Borel probability measure, with non-zero Liapunov
exponents, and invariant under a C**¢ diffeomorphism of a smooth Riemann
manifold. In this case, Theorem 2 shows the convergence to the tangent map
of the best LP-estimates.

Remark 7 The above results can be applied to the estimation of tangent
maps from data sets in two empirical settings:

a) Finite samples of a given probability distribution on IR".

Let X1, X, ..., X, be independent random k-vectors defined on some probabil-
ity space (2, B, P) and with a common probability distribution P on IRF. Let
f be a real valued function on IR* and assume that f and P satisfy the hy-
potheses of Theorems 1 or 2. Forw € €, let P, ., be the empirical probability
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measure of X1(w), Xa(w), ..., X, (w) given by
1 n
Puo(A) = — 3 1a(X;(w)).
j=1

For a € spt(P) and r > 0, let

1 1
i = BBl P M= B )
Then ([2]) Pno * P for P-almost every w, and also p, “, i for P-almost
every w, which easily gives that lim,_ . 3, , = B, at P-almost every a, for
P-almost every w , where f3,, . is the best linear estimate in LP(u,,)-norm of f
at a, and f3, is the best linear estimate in LP(p)-norm of f at a. Since f and
P satisfy the hypotheses of Theorems 1 or 2, lim, o 3, = D f(a) at P-almost
every a, and then lim,_olim, . 3, , = D f(a) for P-almost every w.
b) Data sets from finite orbits of smooth dynamical systems.
Let (M, f,v) be a probabilistic dynamical system composed of a state space
M c IR*, a dynamical law f : M — M such that the state zy of the system
at time k evolves according to the equation xyy1 = f(xy), and an f-invariant
and ergodic probability measure v on M. For x € M, let v, 5, be the orbital
measure, given by

P|B(a,r) .

Using an argument similar to that given above and Remark 1, we see that
if v and the coordinates of f satisfy the hypotheses of Theorems 1 or 2,
lim, o lim, .o 3,, = Df(a) holds at v-almost every a for v-a.e. xo, where

B, 18 the best linear estimate in Lp((—(}g( 55Vn w) | B(a,r))-norm of f at
, Vn,zq a,r >
a.

Acknowledgments: We are indebted to Professor Pertti Mattila for a
shortening of the previous longer proof of Lemma 4.
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