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degree of accuracy. We propose an adaptation of E.R.A. for the computation of
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We prove, for a Borel measurable dynamics f; the existence of Liapunov ex-

ponents for the function Sr(x); mapping each point x to the matrix of the best
linear Lp-�tting of the action of f on the closed ball of radius r centered at x; and
we show how to use E.R.A. to get reliable estimates of the Liapunov exponents
of Sr: We also propose a test for checking the di¤erentiability of an empirically
observed dynamics.
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1. Introduction.

In this article we �nd conditions ensuring the convergence of the Eckmann and
Ruelle algorithm (see [7]) used in the estimation of the Liapunov exponents, for
the tangent map, of an ergodic measure, invariant under a smooth dynamical
system. We start by introducing the Liapunov exponents.

1.1. Liapunov exponents of dynamical systems. Oseledec theorem.

Let f :M !M be a dynamical system where M is a Borel subset of IRs; and let
� be an f -invariant probability measure on the �-algebra of Borel subsets of M:
Let S :M !Ms be a measurable map whereMs is the set of real s� s matrices
and S is such that log+(kS(x)k) 2 L1(�) (for an arbitrary matrix A; we denote by
kAk the largest eigenvalue of (A�A)1=2 where A� denotes the transposed matrix
of A). Consider the matrix S(q)z de�ned by

S(q)z = S(f q�1(z)) S(f q�2(z)) � � � S(z); (1.1)

where fk denotes the k-fold composition f � f � � � � � f: The multiplicative ergodic
theorem proved by Oseledec (see [13]) states that the limit

�z = limq!1(S
(q)�
z S

(q)
z )(2q)

�1

exists �-a:e: The logarithms of the eigenvalues of �z are called characteristic (or
Liapunov) exponents of S at z: If � is ergodic, they are constant �-a:e:
If M is a smooth submanifold of IRs; f 2 C1(M) and � has a compact sup-

port, the Liapunov exponents for S(x) = Df(x) are well de�ned (see [15]). They
quantify the sensitivity of the system to initial conditions, and give relevant infor-
mation about the entropy and fractal dimension of the invariant measure � (see
[6]). The eigenspaces of the matrix �z also give useful information on the local
structure of �:

1.2. Estimation of the Liapunov exponents of an observed dynamics.
The Eckmann and Ruelle algorithm.

Assume that the state space M de�ned in section 1.1. is an open subset of IRs:
When computing the Liapunov exponents of Df a standard problem arises when
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the time one mapping f is unknown and the tangent map must be estimated by
observing a given vectorial time series fx0; :::; xn�1g � IRs: This time series is
assumed to consist of the �rst n points of the orbit of the initial state z under an
unknown evolution law f of a dynamical system, i.e. xi = f i(z); i = 0; :::; n � 1
(we denote this time series by On(z)): Most of the algorithms used to estimate
Liapunov exponents use a linear �tting of the tangent map (see for instance [7], [16]
and [1]). One of the most frequently used is E.R.A. It has proved computationally
e¢ cient in giving the whole Liapunov spectrum of many dynamics, instead of the
largest Liapunov exponent, as done by other standard algorithms ([21], [17]).
However we do not know of any rigorous proof of its convergence. We provide
it in Theorem 2.3: In particular we show how E.R.A. may be used to compute
the whole Liapunov spectrum of a smooth dynamics, up to an arbitrary degree of
accuracy. We now describe how this algorithm works.
LetDf (q)z be the matrix de�ned by (1.1) for S = Df: SinceDf is unknown, the

algorithm replaces it by an estimate. Given xi 2 On(z); the estimate of Df(xi) is
obtained by taking the linear map �r;xi;n which best describes how the evolution
law takes the vectors xj � xi to the vectors xj+1 � xi+1 for vectors xj in a small
ball centered at xi: Given a radius r > 0; let Nr;n(i) denote the set of indices j
such that jxj � xij2 � r (j�j2 denotes the Euclidean norm) and xj 2 On(z): If we
use the least squares �t then �r;xi;n minimizes, in the set of linear maps

Ar;xi;n(�) :=

24 1
n

X
j2Nr;n(i)

�
jxj+1 � xi+1 � �(xj � xi)j2

�2351=2 : (1.2)

In order to obtain the convergence of the algorithm we need to ensure the
goodness of the estimate �r;xi;n of Df(xi):

1.3. Convergence of E.R.A: description of the proof.

We assume from now onwards that we work in the setting described in section
1.1. Given a point x in M; let B(x; r) denote the closed ball, in the Euclidean
norm, with radius r centered at x: Given p and r; with 1 < p <1 and r > 0 we
de�ne, on the set Ls of linear maps from IRs to IRs; the functional

Ar;x;�(�) :=
�Z

B(x;r)

�
jf(y)� f(x)� �(y � x)jp

�p
d�(y)

�1=p
; (1.3)
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where j�jp is the usual p-norm of vectors in IRs: If there is a unique �r;x;� 2 Ls
where the minimum of Ar;x;� is attained, we say that �r;x;� is the best linear
estimate in Lp(� jB(x; r))-norm of f at x (throughout the text � jB(x; r) denotes
the restriction of the measure � to the ball B(x; r)):
Notice that (1.3) coincides with (1.2) when p = 2; x = xi and � = �z;n

with �z;n = n�1
Pn�1

j=0 �fj(z): Thus, E.R.A. replaces Df(xi) with the linear map
�r;xi;�z;n which is the best linear estimate in L

p(�z;n jB(xi; r))-norm of f at xi: If
f is a Borel measurable dynamics, and � is an f -invariant and ergodic measure,
we prove that limn!1 �r;xi;�z;n = �r;xi;� �-a:e: z 2 M; where �r;xi;� is the best
linear estimate in Lp(� jB(xi; r))-norm of f at xi. The goodness of �r;xi;�z;n as an
estimate of Df(xi) may thus be obtained by proving �rst the goodness of �r;xi;�z;n
as an estimate of �r;xi;�; and then the goodness of �r;xi;� as an estimate of Df(xi):
The determination of su¢ cient conditions for the convergence of �r;x;� to

Df(x) when the radius r tends to zero is not a trivial problem due to the fact
that the measure � may exhibit a complex local structure. It is shown in [11]
that there exists an inverse relationship between the regularity conditions of �, in
terms of local densities, and the smoothness of the mapping f required to ensure
the goodness of the estimates. Also, if the measure � jB(x; r); for small r; is
concentrated near a hyperplane, �r;x;� may be a poor estimate. This is known to
happen when estimating the Liapunov exponents of an empirically recorded time
series with embedding techniques (see [18], [7]). In that case, the inaccuracy of
linear �ttings makes it di¢ cult to distinguish between the exponents given by the
algorithm which are the true Liapunov exponents of the measure and those which
are spurious. We discuss how to get round this problem in section 1.6.

1.4. Lpr-Liapunov exponents.

Assume now that the point to matrix function Sr;� mapping each point x to
the matrix of the best linear estimate in Lp(� jB(x; r))-norm of f at x is well
de�ned. We may then ask if the hypotheses of the Oseledec theorem hold and
hence the Liapunov exponents of Sr;� are well de�ned. If they are, we call them
Lpr-Liapunov exponents. The interpretation of the Liapunov exponents of Df
as asymptotic exponential rates of convergence or divergence of in�nitely nearby
orbits is obtained by applying the chain rule to Df qv, where v is a perturbation
in the tangent space. However, in practice we may not have access to in�nitely
nearby orbits and the map Sr;�(x) describes the evolution of observable data, in
the ball B(x; r); better than Df(x) does. Although the chain rule does not work
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for the linear Lpr-estimates, the Oseledec theorem provides a multiplicative average
of the Sr;�(x) matrices along the orbit. The interest of the Lpr-Liapunov exponents
lies in the fact that they are also de�ned for Borel measurable non-di¤erentiable
dynamics, and the state space M may be any Borel subset of IRs (see Theorem
2.1).
To compute the Lpr-Liapunov exponents we have to modify E.R.A. slightly, keeping
the radii of the balls �xed, instead of taking a given number of closest neighbours
as in the original algorithm. In particular, if we keep the radius r of the balls
constant, take a su¢ ciently large number q of matrices to be estimated, and a
su¢ ciently large number n >> q of points in the orbit, this version of E.R.A.
gives us the Lpr-Liapunov exponents up to an arbitrary degree of accuracy (see
Theorem 2.2). If instead we �rst take a su¢ ciently large q; then �x a su¢ ciently
small value of r and then take an n large enough, we can obtain the Liapunov
spectrum of Df; for a smooth dynamics f; with arbitrary accuracy.
In order to reduce the amount of time needed to make linear �ts using all points

in each ball we can incorporate the box-assisted device for �nding neighboring
points (see [8]). See [12] for a more detailed discussion of the practical issues
involved in the use of the algorithm.

1.5. Test for the smoothness of the dynamics.

We need to check the smoothness of empirical data when computing their Li-
apunov exponents, if we want to interpret them as estimates of the Liapunov
spectrum of the tangent map. To this end we provide an additive test to measure
the degree of di¤erentiability of the data. Let Ar;x;� be de�ned by (1.3) and let
Sr;� be the function mapping each point x to the matrix Sr;�(x) of the best linear
estimate in Lp(� jB(x; r))-norm of f at x. The weighted error corresponding to
Sr;�(x) is (�(B(x; r)))�1=pAr;x;�(Sr;�(x)): The goodness of the linear �ts is de�ned
by

Rr;�(Sr;�) =

Z
M

1

(�(B(x; r)))1=p
Ar;x;�(Sr;�(x))d�(x) =Z

M

�
1

�(B(x; r))

Z
B(x;r)

�
jf(y)� f(x)� Sr;�(x)(y � x)jp

�p
d�(y)

�1=p
d�(x):

In Theorem 2.1. we prove that under suitable conditions this quantity is
well de�ned. Since the algorithm replaces Sr;�(x) with Sr;�z;n(x) where �z;n =
n�1

Pn�1
j=0 �fj(z) (see section 1.3), the algorithm gives
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R
(q)
r (Sr;�z;n) :=

1
q

Pq�1
i=0

1
(�z;n(B(f

i(z);r)))1=p
Ar;f i(z);�z;n(Sr;�z;n(f

i(z)))

as estimate of Rr;�(Sr;�): In Theorem 2.2 we prove the convergence of R
(q)
r (Sr;�z;n)

to Rr;�(Sr;�) when q and n tend to in�nity. Finally, we de�ne the parameter

R := lim infr!0
log(Rr;�(Sr;�))

log r

and in proposition 1 we provide lower bounds forR when f is a Hölder, a Lipschitz,
or a C1+" function. In particular, in the di¤erentiable case we prove that R � 1:

1.6. Adaptation of E.R.A. to a dynamics in a smooth submanifold of
IRs.

In Theorem 2.3 we give su¢ cient conditions for the convergence of E.R.A. to
the Liapunov exponents of the tangent map Df when a smooth dynamics f is
de�ned on a d-dimensional smooth submanifold M in IRs, with d � s: We brie�y
describe how the algorithm works in this case. Let (Ui;�i) be a chart at xi 2
On(z) with �i(xi) = 0; and let gi = �i+1 � f � ��1i : Then, Df(xi) is de�ned
as Df(xi) = D��1i+1(0)Dgi(0)D�i(xi) and is independent of the chosen charts.
The Liapunov exponents are the logarithms of the eigenvalues of the matrix �z =
limq!1(Dg

(q)�Dg(q))(2q)
�1
whereDg(q) = Dgq�1(0) Dgq�2(0) ��� Dg0(0) and do not

depend on the chosen charts either. The problem is how to select charts (Ui;�i)
at the points xi 2 On(z) and, given the choice, to prove the convergence to Dgi(0)
of the best linear estimate in Lp(�n;i jB(0; r))-norm of gi at the origin, where
�n;i := �i#(�z;n jUi) is the measure induced by �z;n jUi under the map �i; and
�z;n = n�1

Pn�1
j=0 �fj(z): Let xij 2 On(z); j = 1; :::; d be the nearest neighbours of

the point xi such that the vectors vj = xij�xi; j = 1; :::; d are linearly independent,
and let Ti be the subspace spanned by them. The algorithm takes an r0 > 0; and
a chart (Ui;�i) at xi, where Ui = fy 2 IRs : jy � xij2 < r0g; such that the
restriction of �i to Ui\On(z) is given by �i(x) = �Ti (x�xi); where �Ti denotes
the orthogonal projection of IRs on Ti:We show in Theorem 2.3 that such a chart
exists for small enough r0: Notice that in this case the estimate of Dg(q) is a d� d
matrix. Therefore this method gives an estimate of the d true exponents of Df
thus avoiding the often pointed out problem (see [2], [7] and [16]) of detecting the
s� d spurious exponents.
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2. Results.

We work in the framework described in section 1.1: Recall that Ls denotes the
set of linear maps from IRs to IRs;Ms denotes the set of real s� s matrices, and
Q� stands for the transposed matrix of the matrix Q: We denote by spt(�) the
topological support of � and by dim� the Hausdor¤ dimension of the measure
� de�ned by dim� = inf fdim(A) : �(A) > 0g where dim(A) is the Hausdor¤
dimension of the set A (see [10]).
We start with a lemma which states su¢ cient conditions on f; � and p for the

existence and uniqueness of the best linear estimate in Lp(� jB(x; r))-norm of f at
the point x 2M whereM is a Borel subset of IRs: In order to obtain uniqueness we
need to assume that � jB(x; r) is not concentrated on hyperplanes. We denote by
P (B(x; r)) the set of Borel probability measures onM such that �(H\B(x; r)) <
�(B(x; r)) holds for any hyperplane H:We adopt the notation k�k2 for the usual
norm of linear maps, that is k�k2 = maxfj�vj2 : jvj2 = 1; v 2IRsg:
For x 2M; r > 0; � 2 P (B(x; r)) and p 2 (1;1) we de�ne, on the set Ls; the

functional Ar;x;� given by (1.3) and the functional hr;x;� given by

hr;x;�(�) =
�Z

B(x;r)

�
j�(y � x)jp

�p
d�(y)

�1=p
: (2.1)

Lemma 1. Let S = f� 2 Ls : k�k2 = 1g; p 2 (1;1); x 2 M; r > 0; and
� 2 P (B(x; r)): Then
(i) There is a Tr;x;� 2 S where the minimum value of hr;x;� on S is attained and
hr;x;�(Tr;x;�) > 0:
(ii) Let jf jp 2 Lp(� jB(x; r)): Then, there is a unique �r;x;� 2 Ls where the
minimum value of Ar;x;� on Ls is attained and



�r;x;�

2 � 2
hR
B(x;r)

�
jf(y)� f(x)jp

�p
d�(y)

i1=p
hr;x;�(Tr;x;�)

: (2.2)

Proof. The �rst statement of part (i) follows from the continuity of the func-
tional hx;r;� on the compact set S; and the assumption � 2 P (B(x; r)) ensures
hr;x;�(Tr;x;�) > 0:
Since jf jp 2 Lp(� jB(x; r)); Ar;x;�(�) <1 for every � 2 Ls: Let � := inf�2Ls Ar;x;�(�);
and R := �+Ar;x;�(0)

hr;x;�(Tr;x;�)
: Then Ar;x;�(�) > � if k�k2 > R; so that the continu-

ous functional Ar;x;� attains its minimum in Ls: The uniqueness of the minimum

7



can be obtained from the strict convexity of the normed space Lp(� jB(x; r)) for
p 2 (1;1) and from the fact � 2 P (B(x; r)): Let Tr;x;� 2 S be the linear map
obtained in (i). Then, for any � 2 Ls; hr;x;�(�) � k�k2 hr;x;�(Tr;x;�) holds, which
for � = �r;x;� gives



�r;x;�

2 � hr;x;�(�r;x;�)

hr;x;�(Tr;x;�)
�
Ar;x;�(�r;x;�) +

hR
B(x;r)

�
jf(y)� f(x)jp

�p
d�(y)

i1=p
hr;x;�(Tr;x;�)

:

This inequality together with Ar;x;�(�r;x;�) � Ar;x;�(0) completes the proof of
(2.2).
The following theorem establishes the existence of Lpr-Liapunov exponents. In a
previous version, this theorem was proved for a continuous dynamics. The present
formulation for a measurable dynamics, in the spirit of the Oseledec theorem, has
been possible due to the observation of an anonymous referee that Ar;x;�(S) is
a smooth functional on S: This has also substantially simpli�ed the proof of the
theorem.

Theorem 2.1. Let M be a Borel subset of IRs and let f : M ! M be a Borel
measurable dynamics. Let � be an f -invariant measure with compact support and
dim� > s� 1: For p 2 (1;1) and r > 0; let Sr;� : spt(�) ! Ms be the function
which maps each point x 2 spt(�) to the matrix of the best linear estimate in
Lp(� jB(x; r))-norm of f at x; i:e: Sr;�(x) = �r;x;�: Then

(i) The limit �r;�(z) := limq!1(S
(q)�
r;�;z S

(q)
r;�;z)(2q)

�1
exists �-a:e:; where S(q)r;�;z is de-

�ned as in (1.1) for S = Sr;�:
(ii) Let �r;�;1(z) > �r;�;2(z) > � � � > �r;�;k(z) be the logarithms of the non equal
eigenvalues of �r;�(z) (we call them Lpr-Liapunov exponents at the point z)
and Ej(z) be the subspace generated by the eigenvectors corresponding to those
eigenvalues of �r;�(z) not larger than exp(�r;�;j(z)). Then E1(z) � � � � � Ek(z)
and for v 2 Ej(z)nEj+1(z)

lim
q!1

q�1 log
��S(q)r;�;z(v)��2 = �r;�;j(z):

(iii)The functions z ! �r;�;j(z) and z ! dim(Ej(z)) are measurable and f -
invariant. If � is ergodic, they are constant �-a:e:
(iv) The quantity Rr;�(Sr;�) :=

R
M

1
(�(B(x;r)))1=p

Ar;x;�(Sr;�(x))d�(x) is well de�ned.
If � is ergodic, then Rr;�(Sr;�) = limq!1R

(q)
r (Sr;�) holds for �-a:e: z 2 M; where

R
(q)
r (Sr;�) =

1
q

Pq�1
i=0

1
(�(B(f i(z);r)))1=p

Ar;f i(z);�(Sr;�(f i(z))):
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Proof. To prove statements (i) to (iii) we show that the hypotheses of Os-
eledec theorem hold for the dynamics restricted to the full �-measure set M� =
\1i=0f�i(spt(�)) and for the matrix valued mapping Sr;�: Since dim� > s� 1; we
have that � 2 P (B(x; r)) for any x 2 spt(�): Using the compactness of spt(�) we
get jf jp 2 L1(�); so in particular that jf jp 2 Lp(�); and by Lemma 1 the function
Sr;� is de�ned on spt(�) and Sr;�(f i(z)) is de�ned for every z 2M�; i 2 IN:
Let fxng be a sequence on spt(�) converging to x: Since �(@B(x; r)) = 0 for

any x 2 M and r > 0; we get the weak convergence of the sequence of measures
f� jB(xn; r)g to � jB(x; r): From this, the continuity of the function H de�ned
on the compact set spt(�) � S by H(x; T ) = hr;x;�(T ) can be derived (recall
that S = fT 2 Ls : kTk2 = 1g). Then, there is a (x�; T �) 2 spt(�)� S where H
attains its minimum value, and using (i) of Lemma 1 we have that H(x�; T �) > 0:
Using this fact together with (2.2) we can get a positive constant K such that
kSr;�(x)k2 < K for x 2 spt(�):
Since the map S ! Ar;x;�(S) is a convex and di¤erentiable functional in the

set G = f� 2 Ls : k�k2 < Kg; and the unique minimum Sr;�(x) of Ar;x;� belongs
to G; the map Sr;� is unambiguously characterized (see [14]) by  (x; S) = 0

where  is the Borel measurable function de�ned on M� � IRs2 by  (x; S) =
jGradAr;x;�(S)j2 : Thus, the graph of Sr;�

Graph(Sr;�) := f(x; Sr;�(x)) : x 2M�g = f(x; S) 2M� � IRs2 :  (x; S) = 0g

belongs to the �-�eld of the Borel subsets of M� � IRs2and then (see Theorem
2.3 and Remark in pp. 7 of [5]) Sr;� is Borel measurable on M�: The proof of
statements (i) to (iii) is completed by proving that log+(kSr;�(x)k2) 2 L1(�)
which is obtained using that kSr;�(x)k2 is bounded in spt(�):
The proof of (iv) follows from Birkho¤�s Ergodic theorem (see [20]). It su¢ ces

to check that the mapG(x) = 1
(�(B(x;r)))1=p

Ar;x;�(Sr;�(x)) is �-integrable. The Borel
measurability is obtained by the measurability of the functions x ! �(B(x; r));
(x; S)! Ar;x;�(S) and x! Sr;�(x): The integrability can then be proved by tak-
ing into account that the maps x! kSr;�(x)k2 and x! jf(x)jp belong to L1(�):

The next theorem shows how E.R.A. can be used to compute the Lpr-Liapunov
exponents. Given a �nite orbit On(z) = ff i(z) : i = 0; :::; n � 1g; the natural
approximation for � fromOn(z) is �z;n = n�1

Pn�1
i=0 �f i(z): Thus, the algorithm acts

by �tting the matrix Sr;�z;n(x) of the best linear estimate in L
p(�z;n jB(x; r))-norm
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of f at x 2 On(z): Assume that Sr;�z;n(x) is de�ned for any x 2 On(z); let S
(q)
r;�z;n;z

be de�ned as in (1.1) for S = Sr;�z;n and let �r;�z;n;q(z) = (S
(q)�
r;�z;n;z S

(q)
r;�z;n;z)

1
2q :

Then, the exponents �(q)r;�z;n;j; j = 1; :::; s that E.R.A. gives, are the logarithms of
the eigenvalues of the matrix �r;�z;n;q(z): The estimate of Rr;�(Sr;�) given by the
algorithm is

R
(q)
r (Sr;�z;n) :=

1
q

Pq�1
i=0

1
(�z;n(B(f

i(z);r)))1=p
Ar;f i(z);�z;n(Sr;�z;n(f

i(z))):

Theorem 2.2. Let M be a Borel subset of IRs; and let f : M ! M be a Borel
measurable dynamics. Let � be an f -invariant and ergodic measure with compact
support and dim� > s� 1: For p 2 (1;1) and r > 0; let �r;�;j; j = 1; :::; s be the
�-a:e: constant Lpr-Liapunov exponents. Given On(z) = ff i(z) : i = 0; :::; n� 1g;
let �(q)r;�z;n;j(z); j = 1; :::; s be the estimates of the L

p
r-Liapunov exponents obtained

by the Eckmann and Ruelle algorithm from On(z): Then,

lim
q!1

lim
n!1

�
(q)
r;�z;n;j

(z) = �r;�;j; j = 1; :::; s (2.3)

and
lim
q!1

lim
n!1

R(q)r (Sr;�z;n) = Rr;�(Sr;�) (2.4)

for �-a:e: z 2M:

Proof. By Theorem 2.1, for any p 2 (1;1) and r > 0 the Lpr-Liapunov exponents
�r;�;j; 1 � j � s are de�ned, and by the ergodicity of � they are constant �-
a:e: They are the logarithms of the eigenvalues of the �-a:e well de�ned matrix
�r;�(z) := limq!1 �r;�;q(z) where �r;�;q(z) := (S

(q)�
r;�;zS

(q)
r;�;z)(2q)

�1
and S(q)r;�;z is de�ned

as in (1.1) for S = Sr;�: Since the characteristic polynomial of any matrix is a
continuous function of its entries and the roots of any polynomial are continuous
functions of its coe¢ cients (see [9]), it follows that the eigenvalues of any matrix
are continuous functions of its entries and then

lim
q!1

�
(q)
r;�;j(z) = �r;�;j; j = 1; :::; s (2.5)

where �(q)r;�;j(z) are the logarithms of the eigenvalues of �r;�;q(z):

The exponents computed by E.R.A., that we have denoted by �
(q)
r;�z;n;j

(z);

j = 1; :::; s; are the logarithms of the eigenvalues of the matrix �r;�z;n;q(z); where
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�z;n = n�1
Pn�1

i=0 �f i(z) and z 2M: The proof of (2.3) is completed by proving the
existence of a set B of full �-measure such that for z 2 B and x 2 spt(�); Sr;�z;n(x)
is de�ned for large n; and limn!1 Sr;�z;n(x) = Sr;�(x) holds. In this case we have
that limn!1 �r;�z;n;q(z) = �r;�;q(z) for q 2IN and z 2 B \

�T1
k=0 f

�k(spt(�))
�
and

by the continuity of the eigenvalues of a matrix with respect to its entries we get

lim
n!1

�
(q)
r;�z;n;j

(z) = �
(q)
r;�;j(z) for q 2 IN; j = 1; :::; s (2.6)

which together with (2.5) gives (2.3).
Now we prove that �-a:e: z; and for x 2 spt(�); Sr;�z;n(x) is de�ned for large n;

and limn!1 Sr;�z;n(x) = Sr;�(x) holds. For the proof of existence and uniqueness
of Sr;�z;n(x) we have to check that �z;n 2 P (B(x; r)) and jf jp 2 Lp(�z;n jB(x; r))
holds for large n (see Lemma 1). Since dim� > s�1 we have that � 2 P (B(x; r))
for any x 2 spt(�); and compactness of spt(�) implies jf jp 2 Lp(�): Thus, it
su¢ ces to show that f�z;ng converges weakly to � for �-a:e z 2 M: When f is a
continuous dynamics, this fact is well known. It is not di¢ cult to see that this is
also true for any Borel measurable �-preserving dynamics: observing that the set
of balls centered at points with rational coordinates and with rational radii are a
countable basis for the usual topology of IRs; the weak convergence of f�z;ng to
� for �-a:e z 2 M follows from Theorem 2.2 in [4]. Let B1 denote the set of full
�-measure where the weak convergence of f�z;ng to � holds. We prove that there
is a set B � B1 of full �-measure such that for any z 2 B and any x 2 spt(�);
limn!1 Sr;�z;n(x) = Sr;�(x) holds, showing that any subsequence of fSr;�z;n(x)g
contains a subsequence which converges to Sr;�(x): In order to do this we �rst
prove that fSr;�z;n(x)g is a bounded sequence. Using Lemma 1 we get


Sr;�z;n(x)




2
�

2Ar;x;�z;n(0)
hr;x;�z;n(Tr;x;�z;n)

: (2.7)

We get an upper bound for f



Sr;�z;n(x)




2
g proving that for any z 2 B;

limn!1 hr;x;�z;n(Tr;x;�z;n) = hr;x;�(Tr;x;�) and limn!1Ar;x;�z;n(�n) = Ar;x;�(�)

holds where Tr;x;� ; � 2 f�; �z;ng is the linear map in S where the minimum value of
the functional hr;x;� is attained, and f�ng is any sequence in Ls with limn!1 �n =
�: We also shall use the last fact to prove (2.4).
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Let C be the set of functions given by

C := fg : g(y) = �B(x;r)

�
jf(y)� t� �(y � x)jp

�p
; x 2M; t 2M; � 2 IRs2g:

(2.8)
Let M� and L�s be countable and dense subsets respectively in M and IRs

2

and
let

C� := fg : g(y) = �B(x�;r)

�
jf(y)� t� � ��(y � x�)jp

�p
; x� 2M�; t� 2M�; � 2 L�sg:

We prove that there is a set B2 � B1 of full �-measure such that for any " > 0;
z 2 B2 and g 2 C there are a g� 2 C� and an n0 2 IN such that����Z g(y)d�(y)�

Z
g�(y)d�(y)

���� < " and

����Z g(y)d�z;n(y)�
Z
g�(y)d�z;n(y)

���� < "

(2.9)
hold for n > n0: We give the more involved proof of the second inequality. The
�rst one can be obtained in an analogous way.

Let B2 := B1 \ (\1i=0f�i(spt(�))) ; g(y) := �B(x;r)

�
jf(y)� t� �(y � x)jp

�p
2 C

and h(y) := �B(x�;r)

�
jf(y)� t� �(y � x)jp

�p
where x� 2M� is taken close to x:

Then for z 2 B2; ����R g(y)d�z;n(y)�1=p � �R h(y)d�z;n(y)�1=p��� �hR
B(x;r)�B(x�;r)

�
jf(y)� t� �(y � x)jp

�p
d�z;n(y)

i1=p
�

K
�
�z;n((B(x; r)�B(x

�; r))
�1=p

where the symbol � denotes the symmetric di¤erence of sets and K is a constant,
depending on k�k2 and jtj2 : The existence of K derives from the boundness of
stp(�) and from the fact that every y in the orbit of z belongs to spt(�): Let fxkg
be a sequence in M� such that limk!1 xk = x: The last inequality together with
the fact that limk!1 limn!1 �z;n((B(x; r)�B(xk; r)) = �(@B(x; r)) = 0; allows
us to choose x� 2M� and n0 2 IN such that����R g(y)d�z;n(y)�1=p � �R h(y)d�z;n(y)�1=p��� � "=2; for n > n0:

Taking g�(y) 2 C� where g�(y) := �B(x�;r)

�
jf(y)� t� � ��(y � x�)jp

�p
satis�es
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����R h(y)d�z;n(y)�1=p � �R g�(y)d�z;n(y)�1=p��� < "=2;

we get ����R g(y)d�z;n(y)�1=p � �R g�(y)d�z;n(y)�1=p��� � " for n > n0;

and the continuity of t(y) = yp completes the proof.
Inequalities given in (2.9), together with the fact that C� is a countable set

of functions and Birkho¤ theorem gives the existence of a set B � B2 of full
�-measure such that for any z 2 B and g 2 C;

lim
n!1

Z
g(y)d�z;n(y) =

Z
g(y)d�(y)

holds. Then, for any z 2 B; x 2 f�1(spt(�)); and any sequence f�ng on Ls such
that limn!1 �n = �;

lim
n!1

Ar;x;�z;n(�n) = Ar;x;�(�) (2.10)

holds (notice that the weak convergence of f�z;ng to � does not permit us to
obtain (2.10) because f is not assumed to be a continuous dynamics). Taking
z 2 B and �n = 0 for all n in (2.10), we can get an upper bound for fAr;x;�z;n(0)g
in (2.7). Since limn!1 hr;x;�z;n(Tr;x;�z;n) = hr;x;�(Tr;x;�) > 0 holds (see part (i) of
Lemma 1.2 in [11]), we also get a lower bound for fhr;x;�z;n(Tr;x;�z;n)g in (2.7).
Then there is an n0 > 0 such that the sequence fSr;�z;n(x)gn>n0 is contained in
a compact set. Thus, any subsequence of fSr;�z;n(x)gn>n0 contains a convergent
subsequence, which we also denote by fSr;�z;n(x)g: If limn!1 Sr;�z;n(x) = S� with
S� 6= Sr;�(x) then

lim
n!1

Ar;x;�z;n(Sr;�z;n(x)) = Ar;x;�(S
�) > Ar;x;�(Sr;�(x))

which follows from (2.10) together with the uniqueness of the minimum of the
functional Ar;x;�: The above inequality contradicts

lim
n!1

Ar;x;�z;n(Sr;�z;n(x)) � lim
n!1

Ar;x;�z;n(Sr;�(x)) = Ar;x;�(Sr;�(x));

so that
lim
n!1

Sr;�z;n(x) = Sr;�(x) (2.11)

holds, which completes the proof of (2.3).
We now prove (2.4). LetR(q)r (Sr;�) = 1

q

Pq�1
i=0

1
(�(B(f i(z);r)))1=p

Ar;f i(z);�(Sr;�(f i(z))):
By Theorem 2.1, Rr;�(Sr;�) = limq!1R

(q)
r (Sr;�): Then it is su¢ cient to prove

13



limn!1
1

(�z;n(B(f
i(z);r)))1=p

Ar;f i(z);�z;n(Sr;�z;n(f
i(z))) =

1
(�(B(f i(z);r)))1=p

Ar;f i(z);�(Sr;�(f i(z))); i 2 IN

holds �-a:e: z which follows from (2.11) and (2.10) for x = f i(z) together with
the weak convergence of f�z;ng to � taking z 2 B \ (\1k=0f�k(spt(�))):

Proposition 1. Let M be a Borel subset of IRs; and let f :M !M be a Borel
measurable dynamics. Let � be an f -invariant measure with compact support
and dim� > s� 1: Then, the parameter

R := lim inf
r!0

logRr;�(Sr;�)

log r

is de�ned and
(i) If f is Hölder continuous of exponent " �-a:e: (that is �-a:e: x 2M; jf(y)� f(x)j2 �
L(jy � xj2)" holds for �-a:e: y 2M where 0 < " < 1 and L is a positive constant),
then R � ":
(ii) If f is Lipstchitz �-a:e: (that is �-a:e: x 2 M; jf(y)� f(x)j2 � L jy � xj2
holds for �-a:e: y 2M where L is a positive constant), then R � 1:
(iii) IfM is open and f 2 C1+" �-a:e (that is f 2 C1 and it has Hölder continuous
derivatives of exponent " for �-a:e:); then R � 1 + ":

Proof. By Theorem 2.1. we know that Rr;�(Sr;�) is de�ned. Let G be a point
to matrix mapping such that kG(x)k2 2 L1(�): Since Sr;�(x) is the best linear
estimate in Lp(� jB(x; r))-norm for f at x;

Rr;�(Sr;�) �
Z
M

1

(�(B(x; r)))1=p
Ar;x;�(G(x))d�(x)

holds. Taking G(x) = 0 in the last inequality we obtain (i) and (ii), and taking
G(x) = Df(x) we obtain (iii).

The next theorem shows how E.R.A. can be used to compute the Liapunov
exponents of the tangent map when the dynamics is de�ned in a d-dimensional
smooth submanifold M of IRs with d � s: Let z 2 spt(�); i 2 IN; xi = f i(z)
and gi = �i+1 � f � ��1i where (Ui;�i) is the chart at xi de�ned in section 1.6.
The algorithm acts by �tting the matrix Gr;n;i(0) of the best linear estimate in
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Lp(�n;i jB(0; r))-norm of gi at the origin, where �n;i = �i#(�z;n jUi) . The expo-
nents �(q)r;n;j(z); j = 1; :::; d that E.R.A. gives, are the logarithms of the eigenvalues

of the matrix �r;n;q(z) := (G
(q)�
r;n G

(q)
r;n)(2q)

�1
where G(q)r;n = Gr;n;q�1(0)Gr;n;q�2(0) � � �

Gr;n;0(0):

We say that � is exact dimensional if

lim infr!0
log(�(B(x;r)))

log r
= lim supr!0

log(�(B(x;r)))
log r

= � �-a:e:

Theorem 2.3. LetM be a d-dimensional submanifold of IRs; f :M !M and let
� be an f -invariant, ergodic and exact dimensional Borel probability measure with
dim� > d� 1: Assume that there is an " > 0 such that M is C1+"; f 2 C1+"(M)
and

R
M
log+(kDfk)d� < 1: For p 2 (1;1) and r > 0; let �(q)r;n;j(z); j = 1; :::; d

be the estimates of the Liapunov exponents provided by the Eckmann and Ruelle
algorithm from the orbit On(z) and let �j; j = 1; :::; d be the �-a:e: constant
Liapunov exponents for the tangent map Df . Then,

lim
q!1

lim
r!0

lim
n!1

�
(q)
r;n;j(z) = �j; j = 1; :::; d (2.12)

for �-a:e: z 2M:

Proof. It is not di¢ cult to prove that for each point x 2 M there exist a
neighborhood Vx in IRs and a di¤eomorphism 	x de�ned in Vx such that the
restriction of 	x to Vx\M is given by 	x(y) = �Tx(M)(y�x) where �Tx(M) denotes
the orthogonal projection of IRs into the tangent space Tx(M) of M at x: Thus,
(Vx;	x) provides a chart at x: This result is also true if we consider the orthogonal
projection on any linear d-dimensional subspace T such that T? \ Tx(M) = f0g;
where T? denotes the orthogonal complement of T: Since dim� > d � 1; and
f�z;ng converges weakly to � for �-a:e: z 2 M; we have that for xi 2 spt(�)
and r > 0; there is an n0 > 0 such that for n > n0 we can �nd d vectors
vj := xij�xi with xij 2 B(xi; r)\On(z) spanning a d-dimensional linear subspace
Tr;n;i: Moreover, since xij 2 B(xi; r)\M; j = 1; :::; d; for a su¢ ciently small r and
large n; T?r;n;i \ Txi(M) = f0g holds. Thus, we can choose the chart (Ui;�i) at
xi 2 On(z) as described in section 1.6.
Since the hypotheses of Oseledec theorem hold, the Liapunov exponents of Df;

which we have denoted by �j; j = 1; :::; d; are de�ned and they are the logarithms
of the eigenvalues of the �-a:e: z well de�ned matrix �z := limq!1 �q(z) where
�q(z) := (Dg

(q)�Dg(q))(2q)
�1
and Dg(q) := Dgq�1(0) Dgq�2(0) � � � Dg0(0):
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By the continuity of the eigenvalues with respect to the entries of the matrix
we have

lim
q!1

�
(q)
j (z) = �j; j = 1; :::; d (2.13)

�-a:e: where �(q)j (z); j = 1; :::; d are the logarithms of the eigenvalues of �q(z):
Let xi 2 On(z) \ spt(�): Since dim� > d � 1 and �i is a di¤eomorphism, we

get that dim �i > d�1 where �i = �i#(� jUi) : Then, �i 2P (B(0; r)) holds. Since
gi is a di¤erentiable function we also get that jgijp 2 Lp(�i jB(0; r)) for small r;
and by Lemma 1 the existence of the best linear estimate in Lp(�i jB(0; r))-norm
for gi at the origin is guaranteed. We denote it by Gr;i(0):

We now see that there is a set A with �(A) = 1 such that for all z 2 A; and
i 2 IN; limr!0Gr;i(0) = Dgi(0) holds. Results given in [11] ensure the existence
of a set Zi � �i(Ui) of full �i-measure such that limr!0Gr;i(a) = Dgi(a) holds for
a 2 Zi: We need that for z 2 A; 0 = �i(f i(z)) 2 Zi holds for any i 2 IN: Notice
that the charts �i are depending on z: This is the reason for which we introduce
a non depending on z countable atlas f(Vj;	j)gj2IN of M which together with a
change of charts shall allow us to get the result.
Let � j = 	j#(� jVj); j 2 IN: Since dim � j > d � 1 we can apply Lemmas

3.1 and 3.2 in [11], so that for any � > 0 there exists a set Wj � 	j(Vj) of
full � j-measure such that for any a 2 Wj there are positive constants K and r0;
depending on a; such that for any � 2 Ld we get

k�k2 �
K

r1+�(� j(B(a; r)))1=p

�Z
B(a;r)

�
j�(y � a)jp

�p
d� j(y)

�1=p
(2.14)

for r < r0: Consider the set of full �-measure given by

A := \1k=0f�k
�
spt(�) \

�
[1j=1	�1j (Wj)

��
:

Let z 2 A; i 2 IN and xi = f i(z): Since xi 2 A; there is a j 2 IN such that
xi 2 	�1j (Wj) \ spt(�): Let (Ui;�i) be the chart that the algorithm takes at xi
and let hi : �i(Ui \ Vj)! 	j(Ui \ Vj) be the C1+" map of change of charts given
by hi := 	j � ��1i : Then, there is a constant L such that

j�(hi(y)� hi(0))jp � j�(hi(y)� hi(0)�Dhi(0)y)jp + j�Dhi(0)yjp �

L k�k2
�
jyjp
�1+"

+ j�Dhi(0)yjp for any y 2 �i(Ui \ Vj) (2.15)
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Using that for small r; � j jB(	j(xi); r) = (hi#�i) jB(	j(xi); r) holds, a change
of variable in the right hand of (2.14) taking a = 	j(xi) and � < "; and (2.15) we
get

k�k2 �
Kr�1��

(� j(B(	j(xi); r)))1=p

"Z
h�1i (B(hi(0);r))

�
j�(hi(y)� hi(0))jp

�p
d�i(y)

#1=p
�

K1r
�1��

(� j(B(	j(xi); r)))1=p

"Z
h�1i (B(hi(0);r))

�
j�Dhi(0)y)jp

�p
d�i(y)

#1=p
�

K1r
�1��

(� j(B(	j(xi); r)))1=p

�Z
B(0;Mr)

�
j�Dhi(0)y)jp

�p
d�i(y)

�1=p
(2.16)

for small r; where K1 andM are constants withM >


Dh�1i (hi(0))

2 : Replacing

r with r=M and taking � = (Gr;i(0) � Dgi(0))Dh
�1
i (hi(0)) in (2.16), and using

that Gr;i(0) satis�es�Z
B(0;r)

�
j(Gr;i(0)�Dgi(0))yjp

�p
d�i(y)

�1=p
� 2

�Z
B(0;r)

�
jgi(y)�Dgi(0)yjp

�p
d�i(y)

�1=p
and that gi 2 C1+"; we get

kGr;i(0)�Dgi(0)k2 �


(Gr;i(0)�Dgi(0))Dh

�1
i (hi(0))




2
kDhi(0)k2 �

K2r
�1��

(� j(B(	j(xi);
r
M
)))1=p

�Z
B(0;r)

�
j(Gr;i(0)�Dgi(0))yjp

�p
d�i(y)

�1=p
�

K3r
"��(�i(B(0; r)))

1=p

(� j(B(	j(xi);
r
M
)))1=p

= K3r
"��

 
�(��1i (B(0; r)))

�(	�1j (B(	j(xi);
r
M
)))

!1=p
; (2.17)

where Ki; i = 1; 2; 3 are constants. Using that for any di¤eomorhism �; B(x; r
l1
) �

��1(B(�(x); r)) � B(x; l2r) holds, where l1 and l2 are constants with l1 > kD�(x)k2
and l2 >



D��1(�(x))


2
together with the fact that � is exact dimensional, � < ";

and (2.17) we get that kGr;i(0)�Dgi(0)k2 = o(r"��) where � is any constant with
0 < � < ":
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We now show that �-a.e. z; Gr;n;i(0) is de�ned and limn!1Gr;n;i(0) = Gr;i(0):
Let B be the set of full measure where the weak convergence of f�z;ng to �
holds. Then for any z 2 B and i 2 IN; we also have the weak convergence of
f�n;ig to �i: Using that �i 2 P (B(0; r)) and jgijp 2 Lp(�i jB(0; r)) for small r;
we get that �n;i 2 P (B(0; r)) and jgijp 2 Lp(�n;i jB(0; r)) for small r and large
n; and again by Lemma 1 Gr;n;i(0) is de�ned for small r and large n: Using the
argument given in Theorem 2.2 when proving limn!1 Sr;�z;n(x) = Sr;�(x); we get
limn!1Gr;n;i(0) = Gr;i(0) for any z 2 B (notice that in this case the continuity
of gi simpli�es the proof). Thus, we have obtained limr!0 limn!1Gr;n;i(0) =
limr!0Gr;i (0) = Dgi(0) for i 2 IN and z 2 A \B: Hence,

lim
r!0

lim
n!1

G(q)r;n(0) = Dg(q) for q 2 IN;

�-a.e.z; and by the continuity of the eigenvalues of the matrix with respect to its
entries

lim
r!0

lim
n!1

�
(q)
r;n;j(z) = �

(q)
j (z); j = 1; :::; d; q 2 IN

which together with (2.13) gives (2.12).

3. Concluding remarks.

Remark 1. Eckmann and Ruelle conjectured that an ergodic measure invariant
under a C2-di¤eomorphism with non zero Liapunov exponent is regular and exact
dimensional (see [6]). This conjecture has been proved in ([3]) for a compactly
supported Borel probability measure, with non-zero Liapunov exponents and in-
variant under a C1+" di¤eomorphism of a smooth Riemannian manifold.

Remark 2. The result of Theorem 2.3 can be obtained for a non exact dimen-
sional measure if f 2 C1+" with " > Dim��dim�

dim��d+1 +
Dim��dim�

p
where Dim� denotes

the packing dimension of � (see [19]). The proof is like in Theorem 2.3 considering
� > (Dim� � dim�)=(dim� � d + 1) in (2.14) and taking into account in (2.17)
that �(B(xi;r))

�(B(xi;r=k))
< k�2r�1��2 holds for r small and any �1 and �2 with �1 < dim�

and �2 >Dim�:
In this theorem we can also assume that M is an open subset of IRs and dim� >
s� 1: Then the result is obtained if f is locally C1+" �-a:e: where " > Dim��dim�

dim��d+1 :

Remark 3. The assumption dim� > k � 1 made in the previous theorems, for
k = s in Theorems 2.1 and 2.2, and k = d in Theorem 2.3, seems to be a natural
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condition which ensures that the dynamics does not take place in a submanifold of
dimension smaller than k; in which case the existence of the k Liapunov exponents
computed from the best linear estimates in Lk is not guaranteed.

Remark 4. We do not know if, under the hypotheses of Theorem 2.3 when d = s;
the Lpr-Liapunov exponents converge to the Liapunov exponents of Df when r
tends to zero. Although limr!0 Sr;�(x) = Df(x) �-a.e, the rate of convergence
required by the available results on perturbation of in�nite products of matrices
(see [15]), is not guaranteed.
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