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Abstract. We show that the Lyapunov spectrum of chaotic vector time series corrupted by noises with a noise-to-signal ratio
of up to 100% in one of the coordinates can be estimated using the output of a noise reduction algorithm designed to deal with
noises of large amplitude.

PACS: 05.45.Tp, 05.10.-a

INTRODUCTION

Recent research on noise reduction [1] has shown that time series of short length (up to 500 data points) generated
by an smooth dynamics corrupted by observational noises of large amplitude can be detected and separated from
the noise, even for noise to signal ratios of up to 300%. There are relevant characteristics of smooth dynamics, as
the Lyapunov spectrum, and in particular, the negative Lyapunov exponents, whose computation is delicate even for
clean time series [2, 3]. It is unclear that observed dynamics in the situation described above can be cleaned and their
Lyapunov spectrum can be recovered. Such is the issue addressed in this paper.

With the purpose of estimating the Lyapunov exponents of noisy time series we first use a noise reduction algorithm
that overcomes the two main intrinsic limitations of the algorithms in the literature:
(i) Early research on noise reduction [4, 5, 6, 7, 8, 9] was based on local linear estimations of the unknown dynamics
using least squares methods. The inaccuracy of these methods in the local estimation of the dynamics is a known fact
in the noise reduction literature [9]. We use instead the theory ofmeasurement error models[10], that has recently
been introduced in this area [1, 11], and gives estimators with nice statistical properties.
(ii) All noise reduction algorithms use an iterative procedure that takes the output of the algorithm as the input in
the next iteration. For time series corrupted by noises of large amplitude it is crucial to have efficient criteria for
determining the optimal sizes of the neighborhoods to be used in the local estimations of the dynamics at each iteration.
To this end we have recently proposed [1] an adaptive neighborhoods technique based on a statistical test with null
computational cost. The criterion is to keep the sizes of the neighborhoods as small as possible while guaranteeing,
with a given confidence level, that the relevant information is contained in the neighborhoods. As the number of
iterations increases, the noise level decreases, and the sizes of the neighborhoods reduce accordingly.

The results that we obtain with our algorithm are remarkable for short length Hénon and Lorenz time series corrupted
by noises of large amplitude. Furthermore, the time series that our algorithm gives as output allows us to obtain
reasonable estimates, using the classical Eckmann and Ruelle algorithm [2], of the Lyapunov exponents even for a
noise having large amplitude (of up to 100% noise-to-signal ratio) in one of the components especially if the other
component of the time series is corrupted by a noise of smaller amplitude. In the section devoted to numerical results
we give empirical evidence of these facts for time series generated by a Henon dynamics corrupted by noise.

THE ALGORITHMS

NOISE REDUCTION ALGORITHM
We assume that the observed time series{X i , i = 1, ...,N} ⊂Rd is the sum of an unknown deterministic time series

{si , i = 1, ...,N} and an unknowni.i.d. stochastic time series{ei , i = 1, ...,N} with null mean. ThenX i = si +ei ,1≤
i ≤ N, andsi+1 = f (si), where f : M ⊂ Rd →M is an unknown smooth chaotic dynamics.

LetUi be a neighborhood ofX i , i = 2, ...,N−1, let {Z i := (X i−1,X i ,X i+1); i = 2, ...,N−1} be a three-embedding of
the noisy vector time series and〈Z i〉 := 1

#Ui
∑ j:X j∈Ui

Z j , where #Ui denotes the number of points withinUi . Since the



effect of the noise is to separate the 3d-dimensional time series{Z i} from ad-dimensional submanifold, the noise can
be partially removed by projecting the data{Z j −〈Z i〉 ,X j ∈Ui} into optimald-dimensional linear subspacesT i . The
estimation ofz j := (sj−1,sj ,sj+1) obtained withUi is ẑi

j = 〈Z i〉+PT i (Z j −〈Z i〉) wherePT i Z denotes the orthogonal
projection, with respect to the metric used to obtainT i , of the vectorZ onto T i . The optimization criterion is the
minimization of the mean square distance of the pointsZ j −〈Z i〉 to the subspace taking as the metric that induced by
Σ̂−1

3 , whereΣ̂3 is the estimation of the covariance matrix of the errors(ej−1,ej ,ej+1) contained inZ j , and then,

T i := argmin
T

∑
j:X j∈Ui

[Z j −〈Z i〉−PT(Z j −〈Z i〉)]t Σ̂−1
3 [Z j −〈Z i〉−PT(Z j −〈Z i〉)] (1)

wherePTZ := arg minu∈T(u−Z)t Σ̂−1
3 (u− Z) (see in [1] the details of implementation of this algorithm). The

distance induced bŷΣ−1
3 takes into account that the independent variablessj in the underlying linear model in the

variables(sj−1,sj ,sj+1) are also measured with error, and exploits in the optimal way the information about the
structure of the error, in particular the degree of uncertainty in each of the coordinates of the time series. The solution
of (1) gives unbiased and consistent estimators of the parameters of the model [10], which are also those of maximum
likelihood if the errors are Gaussian.

For a clean time series,T i is obtained as in (1) using the neighborhood{sj : (sj − si)t(sj − si) ≤ r2
0}, with r0

guaranteeing that there are at leastd+1 pointssj in the neighborhood satisfying thatz j−〈zi〉 are linearly independent.
For noisy time series, the optimal subspace obtained using the neighborhood{X j : (X j −X i)t(X j −X i) ≤ r2

0} may be
far from the optimal linear subspace for the clean data. This is due to the noise, which introduces false neighbors in the
neighborhoods, and it separates points which are close in the clean time series. The neighborhoods must be sufficiently
large as to guarantee that a significant portion of the data within them corresponds to close neighbors for the clean
time series. Furthermore, the sizes of such neighborhoods should be reduced in accordance with the noise reduction
occurring as the iterative process progresses. On the other hand, since the uncertainties of the individual coordinates
of the time series may be different, the Euclidean distance is not the most appropriate for the construction of the
neighborhoods. We use the distance induced byΣ̂−1

1 whereΣ̂1 is the estimate of thed×d covariance matrix of the
error in the time seriesX. Assume that{ei} ∼ N(0,Σ1) and letT2 := (X i −si)t Σ̂−1

1 (X i −si) whereΣ̂1 is an estimate

of Σ1. Then (N−d)
d(N−1)T

2 has anF distribution [13] with degrees of freedomd andN−d. A 100(1−α0)% confidence

ellipsoid forsi is given by
{

X : (X−X i)t Σ̂−1
1 (X−X i)≤ d(N−1)

N−d Fd;N−d(α0)
}

whereFd;N−d(α0) is the number such

that Pr{Fd;N−d > Fd;N−d(α0)} = α0. It is an ellipsoid centered atX i , whose axes are the eigenvectors ofΣ̂1 and with

jth semi-axis of length
√

f0β j where{β j , j = 1, ...,d} are the eigenvalues of̂Σ1, and f0 := d(N−1)
N−d Fd;N−d(α0). Since

we want a confidence ellipsoid for the points{sj : (sj − si)t(sj − si) ≤ r2
0} we take 2

√
f0β j +r0 as the length of the

jth semi-axis of the ellipsoid instead of
√

f0β j . In the examples of the next section, we useα0 = 0.01

LYAPUNOV EXPONENT COMPUTATION
We use the algorithm proposed by Eckmann and Ruelle [2], which is based on local linear estimates of the tangent

map (see [12] for a proof of the convergence of this algorithm). It estimates the whole of the Lyapunov spectrum
instead of giving only the largest Lyapunov exponent as do other algorithms [14]. Vaccari and Wang [15] have also
studied the estimation of the Lyapunov spectrum of vector time series corrupted by noises of moderate amplitude.

NUMERICAL RESULTS

We show the results obtained with our algorithms for time series generated by the Hénon dynamics corrupted by
an uncorrelated and heteroskedastic error with Gaussian distribution. We intend to show that the combination of
the measurement error theory and the adaptive neighborhood construction allows us to reduce a noise having large
amplitude in one of the components especially if the other component of the time series is corrupted by a noise of
smaller amplitude. The effectiveness of the noise reduction algorithm allows us to use the output to obtain estimates
of the Lyapunov spectrum.

The Hénon map is given by the equationsx1(k+1) = 1−1.4x1(k)2+x2(k), andx2(k+1) = 0.3x1(k). The noise level

NS:=((NS)1,(NS)2) is given by the noise-to-signal ratios(NS) j :=

√
∑N

i=1((ei) j)
2

∑N
i=1((si) j)

2 , j = 1,2 where(si) j and(ei) j denote



TABLE 1. Noise reduction measures for noisy Hénon time series with
NS= (10%,100%).

N = 500 N = 1000 N = 5000 N = 1000

〈RP〉
(σ̂Rp)

77.62
(2.996)

81.74
(2.379)

84.77
(1.052)

85.04
(0.701)

〈(RP)2〉
(σ̂(Rp)2

)
82.01

(3.142)
85.39

(2.348)
88.13

(0.808)
88.49

(0.676)
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FIGURE 1. Noisy Hénon time series withNS= (10%,100%), Clean Hénon time series and Cleaned time series.

the jth components ofsi andei respectively. We quantify the noise removed by the algorithm using the pointwise

distancedP(s, ŝ) :=
(

1
N ∑N

i=1 (‖̂si −si‖2)
2
)1/2

between the cleans and the cleaned̂s time series. IfdP(s, ŝ) < dP(s,X)
then the noise level in̂s is less than the noise level in the input time seriesX. The percentage of global pointwise noise

reduction isRp := 100
(

1− dP(s,̂s)
dP(s,X)

)
and that corresponding to thejth coordinate is(RP) j := 100

(
1− dP((s) j ,(̂s) j )

dP((s) j ,(X) j )

)
,

j = 1,2. Notice that these measures require knowledge of the clean time series. We use such knowledge only to
quantify the noise level reduction. This information is used neither in the noise reduction scheme nor in deciding
when the algorithm must stop. Thus the algorithm may work on data generated by an unknown process. The stopping
criterion we use is the stabilization of the mean number of points in the neighborhoods.

We use a Hénon time series with a noise levelNS= (10%,100%). Thus the noise in the first component of the time
series is moderate and in the second one is very large. For short length time series and large noise levels the results
of the algorithm show a significant dependence on the realization of the error term, and also on the clean time series
considered. For this reason we give in Table 1 the sample mean

〈
Rp

〉
and the sample standard deviationσ̂Rp of Rp

obtained with max{50000/N,10} noisy time series forN ∈ {500,1000,5000,10000}. We quantify the level of noise
reduction in the second component, which is that corrupted with a noise of larger amplitude, using(Rp)2 andσ̂(Rp)2

.

The results in Table 1 show values of
〈
(Rp)2

〉
higher than 82% in all the cases. The values of〈RP〉 and〈(RP)2〉

increase withN whereasσ̂Rp and σ̂(Rp)2
decreases withN. Figure 1 show the noisy, the clean, and the time series

that the algorithm gives as output for one of the 50 noisy time series corresponding toN = 1000. The figure shows
that even for a time series having such a large noise level and such a short length the algorithm is able to recover a
significant part of the geometric structure of the clean time series.

The true values of the Lyapunov exponents (that can be obtained using a clean Hénon time series and the true

tangent maps) areλ1 ≈ 0.42, λ2 ≈ −1.62 andλ1 + λ2 = ln(0.3) ≈ −1.204. The mean values
〈

λ̂1

〉
and

〈
λ̂2

〉
of

the estimates of the Lyapunov exponents obtained using ten outputs of the noise reduction algorithm are shown in
Table 2. These results show, even for short length time series, a positive Lyapunov exponent and therefore a chaotic



TABLE 2. Mean Lyapunov exponents obtained using ten outputs
of the noise reduction algorithm for noisy Hénon time series with
NS= (10%,100%).

N = 500 N = 1000 N = 5000 N = 1000〈
λ̂1

〉
(σ̂

λ̂1
)

0.503
(0.048)

0.443
(0.030)

0.410
(0.014)

0.403
(0.013)〈

λ̂2

〉
(σ̂

λ̂2
)

−1.105
(0.239)

−1.334
(0.198)

−1.528
(0.068)

−1.559
(0.089)

dynamics, and the contraction of volumes elements reflected by a negative sum of the Lyapunov exponents. The results
are reasonable estimates of both Lyapunov exponents for large length time series, and improve those obained in [15]
for a Lorenz dynamics for a moderate noise levelNS = (13%,7.2%,8.1%) using a multivariate global polynomial
regression model. We have also designed a test in order to determine whether the existence of a positive Lyapunov
exponent is an evidence of chaotic dynamics or not. The interpretation of the Lyapunov exponents as asymptotic
exponential rates of convergence or divergence of trajectories corresponding to nearby initial conditions is based on
the existence of a differentiable dynamics. In this case the mean square errorSRRi made by the algorithm at the point
X i using as neighborhoodVi the NV closest points toX i is small if NV is small andN is large. Then the quantity
Ri := 1− SRRi

SYYi
whereSYYi := ∑ j:X j∈Vi

∥∥X j+1
∥∥2

satisfies 0≤ Ri ≤ 1, and it is close to one when the linear estimation

is good. We consider as measure of goodness of the linear fitsR := 1
N−1 ∑N−1

i=1 Ri . In all the results we present above
the mean value ofR is up to 0.95. However, if we calculate the Lyapunov exponents taking as input just the Gaussian
noise used to corrupt the Hénon time series, we observe that the positive Lyapunov exponent with has a similar vale
to the positive Lyapunov exponent of the Hénon dynamics. However the estimates depend strongly onN, NV and
the values ofR are very small. For instance for a time series withN = 5000 andNV = 100, we obtainλ̂1 = 0.524,
λ̂2 = −0.699 andR= 0.09, and forNV = 200 the estimates arêλ1 = 0.471, λ̂2 = −0.95 andR= 0.14. Analogous
results are obtained if we estimate the Lyapunov exponents using the noisy Hénon time series for the same lenght
N = 5000:λ̂1 = 0.870, λ̂2 = −0.258 andR= 0.26 usingNV = 100, and̂λ1 = 1.693, λ̂2 = 0.551 andR= 0.45 with
NV = 200. In these two cases we reject the positive Lyapunov exponent as an evidence of chaotic dynamics.
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