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1. Introduction

The statistical description and modelling of the size structure
and biomass distributions of an ecosystem are fundamental issues
in ecology. Energetic considerations provide evidence of their
significant role (Peters, 1983; Lurié and Wagensberg, 1983), in
particular in the celebrated allometric scaling of metabolic rate
with respect to adult body mass (Kleiber, 1932). This result was
later verified for a wide range of body sizes (Hemmingsen, 1960)
and it was recently extended to biomass production and growth
rates in plants (Nikkas and Enquist, 2001; Damuth, 2001). Damuth
(1981, 1987) – considering a variety of species – showed that
population abundance (N) changes allometrically with body mass
M, i.e. N /M�x. Further studies supported evidence of this
behaviour across a wide body size range (Peters and Raelson,
1984; Marquet et al., 1990; Tokeshi, 1993).

Key properties and processes of an ecosystem, such as
bioaccumulation, energy flow, or nutrient processing, depend on
the size structure of the community, and in particular on its
biomass distribution (Peters, 1983). It is consequently important to
design models and methods describing and simulating biomass
distributions.

There are many distributions in nature that display scaling
features like those described above. In soil sciences, Turcotte’s law
claims that the number N(R) of particles which have diameters
larger than a characteristic diameter R, follows the scaling rule
N(R) � R�D (Turcotte, 1986). In geography, Korcak (1938) found
that the distribution of island areas in the Aegean sea verifies a
similar power law, where N(R) refers in their case to the number of
islands of area greater than R. Also, the number of arthropods
versus body length (Morse et al., 1985) or the number of mammals
and other species versus their body mass (Damuth, 1981) verify
similar power laws. All such distributions follow a general rule,
essentially expressed by the fact that there is a huge profusion of
elements small in size while large elements are relatively scarce. In
fact, they are all versions of Pareto’s law, originally found to rule
income distributions (Pareto, 1897).

The examples above all refer to a law concerning mass
distributions and their relationship to size. The words ‘‘mass’’
and ‘‘size’’ have different meanings in different contexts. In this
paper, ‘‘size’’ refers to body weight and ‘‘mass’’ means biomass. The
total biomass is spread among individuals with a characteristic
body size. The sizes are arranged in increasing order so that the
whole body weight range is represented by an interval I = [a,b].
Information about mass distribution is usually limited. It is
obtained from field data as mass proportions p1, p2, . . ., pn (Sipi = 1)
on a set of size classes partitioning the size range, i.e. I1 = [a,a1],
I2 = [a1,a2], . . ., In = [an�1,b], with a < a1 < . . . < an�1 < b, so that
class Ii carries a fraction pi of total mass.

Ecological Complexity 6 (2009) 246–253

A R T I C L E I N F O

Article history:

Available online 26 June 2009

Keywords:

Biomass distribution

Fractal cascade

Balanced entropy

A B S T R A C T

Size structure is a fundamental property in an ecosystem. We explore the potential of fractal models to

describe biomass distribution within a community across a range of body-weight size. We propose a

consistent method selecting a self-similar cascade generating a fractal distribution that replicates field

data within a range of scales. Admissible cascades constructed from biomass distribution data are

filtered out using the non-parametric Kolmogorov–Smirnov test. A specific analysis is then performed to

detect the biomass spreading across a suitable size scales. This is done by computing a parameter (the

balanced entropy index) that evaluates evenness in mass splitting. This method is successfully applied to

replicate the distribution of fish biomass obtained from a fisheries dataset. The proposed fractal

description of the community size structure of the sampled marine ecosystem may prove useful when

analyzing key ecological processes which involve all individuals in a community regardless of their

species.

� 2009 Elsevier B.V. All rights reserved.

* Corresponding author. Tel.: +34 91 394 2407; fax: +34 91 394 2561.

E-mail address: j-man@ccee.ucm.es (J.-M. Rey).

Contents lists available at ScienceDirect

Ecological Complexity

journa l homepage: www.e lsev ier .com/ locate /ecocom

1476-945X/$ – see front matter � 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.ecocom.2009.05.006



Author's personal copy

These kinds of Pareto’s law have been considered by
Mandelbrot (1982) as hints of a scale invariance or a fractal
behaviour that he claimed to be ubiquitous in nature. Enormous
research effort in many scientific areas has been devoted to check
the fractal nature of shapes, distributions, or processes, matching
Mandelbrot’s intuition.

Since the 1980s, fractal geometry has been used to describe and
parameterize structures with scale invariant features which are
assumed to be the result of a more or less explicit iteration process
acting across a range of scales. The term fractal or self-similar is
loosely attached to objects, distributions or processes when they
have some scale invariant features which are commonly revealed
by associated power laws. In some cases, the exponents of the
power law correspond to fractal dimensions.

A principle of maximum entropy has been claimed to lie behind
the typical scaling laws associated with fractal objects (Pastor-
Satorras and Wagensberg, 1998). A form of entropy maximization
was proposed as a modelling principle for the biomass distribution
of an ecological population (Lurié and Wagensberg, 1983). Building
on both ideas, we propose here a fractal model for the biomass
distribution in an ecosystem. Specifically, we consider the
distribution of biomass across body-weight sizes in a marine
ecosystem. While biomass is a significant variable when repre-
senting size distribution, other measures are also used to describe
size distribution in a marine community, e.g. mass, length,
equivalent spherical diameter, etc. (Peters, 1983). The analysis
of their relationships – notably allometric – is itself a research issue
(see e.g. Safran, 1992).

Fishery data has been chosen in order to test whether the
proposed model can replicate biomass distributional data. There
are some reasons for this choice. First, hauls are naturally expected
to produce a more faithful random sample of the marine
community—obviously within a biomass range constrained by,
e.g. the size of fishing meshes. Notice, however, that a full
ecosystem is not surveyed by the dataset; fisheries data is not
representative of all species in a community sampled by a selective
fishing gear. Secondly, the biomass dataset analyzed here is the
same as the one tested by Lurié and Wagensberg (1983) and thus
there is a chance that a fractal model might fit the distribution, as
we claim in this paper.

Our starting point is that biomass distributions can be
explained as the result of an asymmetrical biomass spreading
operating within a range of scales. In the absence of any other
information, it is natural to claim that biomass is recursively
distributed within smaller scales of individual body-weight sizes
while matching the distribution of biomass at larger scales. This is
consistent with the idea of scale invariance. This approach was first
considered in soil sciences to model soil particle size distributions
(Martı́n and Taguas, 1998). The assumption that disparity in mass
spreading occurs systematically within a range of scales is the
main feature of a self-similar distribution intensively studied in
fractal geometry (Falconer, 1990).

Trinomial cascades are used in this paper to construct self-
similar distributions. These are mass fragmentation processes that
repeatedly subdivide the (bio)mass carried by a size class interval
into three mass fractions supported by size subclasses partitioning
the size interval. Both the rule of mass spreading at different scales
and the partitioning scheme are preserved across scales. A so-
called self-similar distribution is obtained in the limit process
(Falconer, 1990).

Since biomass range has enormous variations, the biomass on a
size interval and the size range covered by the interval may
typically be far from being proportional. This feature can also be
observed in models of biomass distribution (Lurié and Wagens-
berg, 1983). As a result, natural partitions of the size domain used
to report biomass fractions are composed of intervals of different

lengths. In turn, useful biomass fragmentation schemes consist of
spreading comparable mass fractions on unequal size intervals, in
contrast to the most popular fractal constructions (e.g. Cantor
measures or binomial cascades) spreading unequal masses on
intervals of the same length. The trinomial cascades proposed here
for biomass-size distribution are defined on asymmetric size
partitions.

The choice of ternary partitions keeps the need of data to a
minimum. However, it will produce a consistent replication of
biomass distribution data. It is a remarkable fact that a complex
distribution, such as the biomass-size distribution, can be
replicated from the (bio)mass fractions supported by three size
classes only. The model also supplies synthetic distributional data
which when unavailable must be valid when the model fits the
field distribution.

In order to select the best model, we simulate self-similar
cascades that match biomass data at a very crude level, i.e.
agreeing on the biomass carried by three basic size classes. The
Kolmogorov–Smirnov (KS) statistical test is used to compare
sample and synthetic distributions. The KS test discards many
simulated distributions. Mass splitting is then analyzed across the
partitioning schemes defined by the surviving cascades. This is
done using the balanced entropy (BE) index introduced in Martı́n
et al. (2005). The BE analysis determines the self-similar cascade
that best replicates the process of biomass splitting. The BE index is
defined to deal with non-uniform size partitions. While BE analysis
has been applied to test the continuity of field soil particle size
distributions (Rey et al., 2006), its potential use to test self-
similarity has not been considered so far.

2. Materials and methods

2.1. Self-similar cascades

A self-similar cascade is an iterative process that involves
partitioning intervals into subintervals according to a fixed rule
and correspondingly splitting the (probability) mass supported by
the intervals following a different (maybe random) rule. The
process typically defines a limiting (multi)fractal distribution, i.e.
such that the mass concentration (or Hölder) exponent varies
continuously through the mass support interval (Falconer, 1990).
The limit object is a highly intricate distribution that is generated
in a very simple manner.

More specifically, a self-similar (random) cascade model can
be defined as follows. Let I = [a,b] be whole size interval partitioned
in, say, three subintervals I1 = [a,s1], I2 = [s1,s2], I3 = [s2,b],
a < s1 < s2 < b. These are the basic intervals of the cascade. Let
p1 = P(I1), p2 = P(I2) and p3 = P(I3) be the mass proportions of the
intervals I1, I2 and I3, respectively, where p1 + p2 + p3 = 1. The size
fragmentation is defined by the linear mappings wi (similarities)
that transform I into Ii for i = 1, 2, 3; that is, Ii = wi(I). These three
transformations are applied to interval I to get the first generation
of size intervals, Ii, then applied to those three to obtain the
second generation of 9 size intervals, Ii1 i2

� Ii1
where Ii1i2

¼
’i1
ð’i2
ðIÞÞ; i1; i2 ¼ 1;2;3 and so on. After k repetitions, the kth

generation of size intervals Ii1 i2 ...ik
is obtained. As k increases the kth

generation of size intervals gives an increasingly finer partition of I.
The mass is iteratively distributed at each stage among new

sized intervals according to the following scheme: the mass
supported by an interval Ii1 i2 ...ik ; j

is obtained by

PðIi1 i2 ...ik ; jÞ ¼ PðIi1 i2 ...ik Þ � V j;

where Vj are independent random variables with mean pj (for
instance, following a normal distribution of mean pj and variance
s2

j ). If sj = 0, the cascade is deterministic and the limiting
distribution – self-similar – is the prototype model of a multifractal
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measure (Falconer, 1990). In this paper, deterministic cascades are
considered as initial models for biomass distributions. They are
shown to replicate biomass data. In the deterministic case, the
mass of an interval Ii1 i2 ...ik

is given by PðIi1i2 ...ik
Þ ¼ pi1

pi2
. . . pik

.
This produces a (pre-fractal) probability distribution at each stage
of the construction.

2.2. Fishery data

Data from the ATLOR VI expedition (Manrı́quez and
Rucabado, 1976) has been processed to test the hypothesis
proposed in this paper, namely that fractal cascades may explain
biomass data. The same raw data considered by Lurié and
Wagensberg (1983) has been processed here. The ATLOR VI
report consists of raw data from 53 hauls in an upwelling zone
at the northwest coast of Africa obtained during 24 days on the
basis of several catches a day. We processed the ATLOR
expedition data to obtain weight data of fishes of approximately
280,000 individuals from 131 different species, which are
basically pelagic and demersal. While the whole ecosystem
may have not been sampled, it is plausible to argue that the
ATLOR data provides a fair picture of the fish community within
a scale range. The dataset contains 28 different species, each one
contributing at least 1% to the total biomass. Table 1 shows the
taxonomic description of this sub-sample together with the
biomass contributions by species. This sub-sample accounts for
about 85% of the total biomass, so that 15% of the biomass data
is covered by the majority of species (103), each one
representing less than 1% of total biomass. Since we are
interested in describing biomass distribution structure within
a range of body mass sizes regardless of species, we do not
discard those 103 species from the target fish biomass
distribution.

Raw data entries are obtained for the different body weight
measurements (sizes) annotated in the fishery report, ranging
from 0 kg to 12.4 kg. The range of fish body weights considered in
this paper is in between 0 kg and 0.2 kg. This choice is suitable for
comparisons with Lurié and Wagensberg (1983) who limited their
study to the 0–0.085 kg size range. It turns out that only 2.5% of the
sample population have weights outside the 0–0.2 kg range.
Instead, 9% of the population is left out of the Lurié and
Wagensberg 0–0.085 kg range. These weight measurements are
not equally spaced, as can be expected from this type of mass-size
distributions. Indeed, if the pelagic community biomass is binned
into logarithmic size classes the amount of biomass in each is
claimed to be approximately constant over a size ranging
from bacteria to whales (Sheldon et al., 1972, 1977). The body
size classes are naturally defined by their weight measurement
data figures. The size partition so obtained is made up by 161
size classes: J1 = [0,0.01], J2 = [0.01,0.02], . . ., J158 = [0.194,0.197],
J159 = [0.197,0.198], J160 = [0.198,0.199], J161 = [0.199,0.2]. Because
of asymmetry in the measurement data, the associated size
partition is not uniform. The total biomass contributed by each
class Jk is computed by adding the body masses of individuals
whose weights fall inside class Jk—regardless of their species.
Finally, biomass class contents are normalized in order to define a
probabilistic distribution m(Jk), k = 1, . . ., 161, referred to as the
ATLOR distribution for the sequel. When necessary, it will be
assumed that biomass is uniformly distributed inside the size
intervals Jk.

2.3. Model testing

In order to test whether the self-similar cascade model can
replicate fishery data, we construct all possible trinomial cascades
available from the initial biomass data. A cascade is constructed by

setting {w1, w2, w3; p1, p2, p3}, as explained above. In fact, selecting
the size limits s1, s2 for the first generation of size intervals defines
not only the similarities but also the probabilities of any admissible
cascade since it is defined to coincide with the biomasses of the
three basic size intervals. Any admissible cascade is thus generated
according to the following scheme:

1. Two size limits a < s1 < s2 < b are selected among the 162
available weight data points. This choice defines the three basic
size intervals I1 = [a,s1], I2 = [s1,s2], I3 = [s2,b] partitioning the
whole size range [a,b]. In the ATLOR distribution, we have a = 0
and b = 0.2.

2. The (bio)mass contents p1 = m(I1), p2 = m(I2) and p3 = m(I3) of the
basic intervals are obtained from the ATLOR data by aggregating
the biomass contents of the data size intervals Jk contained in
each basic interval Ii. That is, pi ¼

P
Jk � Ii

mðJkÞ, for i = 1, 2, 3.
3. The size fragmentation mapping wi(x) is defined by wi(a) = si�1,

wi(b) = si, i = 1, 2, 3 (in the understanding that a = s0, b = s0).
Notice that the contraction ratio of wi is given by (si � si�1)/
(b � a).

4. A self-similar distribution is defined at any required size scale
from the mass-replicating formula, pðIi1 i2 ...ik

Þ ¼ pi1
pi2

. . . pik
.

From the 161 weight data points that are available, 12,720
possible trinomial cascades can be defined. All of them were
implemented as described above. By #2 above we see by
construction that the biomass fractions of the basic size intervals
Ii for each simulated distribution coincide with those provided by
actual data. The remaining synthetic biomass data, defined for any
arbitrary size class, is used to compare the simulated distributions
with the ATLOR distribution.

The Kolmogorov–Smirnov (KS) test gives an important statis-
tical criterion for comparing any two one-dimensional probability
distributions. The two-sample version of the KS test (DeGroot and
Schervish, 2002) is used here to test whether the ATLOR
distribution differs from each simulated cascade. The two-sample
KS test is a general non-parametric method widely used in
comparisons of any two samples. The KS statistic is defined by

Table 1
Biomass-species description of the sample distribution processed in the article from

the ATLORVI dataset (only species contributing at least 1% of the biomass are listed).

Species Average body-mass (kg) Biomass percentage

Argyrosomus regius 6.728 1.124

Aspitrigla obscura 0.099 2.062

Buglossidium luteum 0.005 0.966

Capros aper 0.029 1.643

Conger conger 3.573 1.892

Dentex macrophthalmus 0.032 1.402

Diplodus annularis 0.023 8.498

Llepidotrigla cavillone 0.016 2.133

Loligo forbesi 0.179 3.577

Loligo vulgaris 0.059 1.354

Macroramphosus gracilis 0.009 1.015

Octopus vulgaris 0.917 5.819

Pagellus coupei 0.024 1.045

Pagellus erythinus 0.044 3.047

Plectorhinchus mediterraneus 0.217 2.142

Pomadasys bennetti 0.109 1.861

Raja naevus 1.029 1.873

Raja undulada 1.463 1.101

Sardina pilchardus 0.026 10.176

Scyliorhinus canı́cula 0.382 3.422

Sepia officinalis 0.168 1.144

Soleidae miscellanea atl-6 0.079 1.294

Spondyliosoma cantharus 0.008 1.707

Trachinus draco 0.094 1.002

Trachurus trachurus 0.048 15.335

Zeus faber 0.855 3.098
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Dn ¼ supx jMðxÞ � PnðxÞj, where M(x), 0 � x � 0.2, is the ATLOR
cumulative distribution defined out of the 162 size data points of
the registered sample, and Pn(x) is a self-similar cumulative
distribution defined from n = 3k intermediate size point obtained
from running the cascade up to the kth stage. The null hypothesis
that the two underlying distributions are the same is rejected at
level a if Dn >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð162þ nÞ=162n

p� �
ka ¼ ka, where ka is found from

the Kolmogorov distribution satisfying Pr(K � ka) = 1 � a.

2.4. The BE index

While the KS test is a critical test to decide whether two
distributions statistically differ, it does not supply information on
the process of mass spreading across sizes, which is characteristic
of self-similar cascades. The balanced entropy (BE) index, that was
introduced by Martı́n et al. (2005) as a generalization of Shannon’s
entropy (1948) is a suitable parameter to evaluate uniformity in
mass fragmentation when partitions are refined (Rey, 2006). The
BE index is defined out of an underlying mass distribution p, and for
a given partition

Q
= {Ij}j of the size interval I, by

BEðp;PÞ ¼
P

j pðI jÞ log pðI jÞP
j pðI jÞ log r j

;

where the rj’s are the relative lengths of intervals in the partition,
i.e. rj = length(Ij)/length(I). Noticed that rj is given by the
contraction ratio of wi in the case when the Ii’s are the basic
intervals of a self-similar cascade. Whenever evident we omit the
term ‘‘p’’ in the notation above. For the ATLOR data, length(I) = 0.2.
Notice that, for any partition, {rj}j forms a probability distribution.
The BE index offers significant information about mass spreading
both at a given scale (defined by a partition) and across different
scales. Also, the BE index is adapted to deal with non-uniform size
partitions.

For a given partition
Q

, BE can be seen as a distance of the mass
distribution p to the uniform distribution, characterized by
p(Ij) = rj. Values of BE near 0 mean that p is very far from being
uniform, whereas values of BE near 1 correspond to distributions
that are close to satisfying the uniform distribution property
p(Ij) = rj.

When two different partitions
Q

,
Q0 are considered such thatQ0 is finer than

Q
(i.e. each interval in

Q0 is either an interval of
Q

or a subinterval of one of
Q

), the difference BE(
Q

) � BE(
Q0) gives

information about how uniform the global mass spreading is
when splitting its mass from the intervals in

Q
into those defined

by
Q0. A rise of BE is consistent with a more uniform redistribution

of mass across
Q0 whereas a lowering of BE is compatible with a

less uniform redistribution. Self-similar mass fragmentation
processes produce a constant value of BE(

Q
j), for any partitionQ

j composed of intervals Ii1 i2 ...i j
at the jth level of the cascade. The

theory concerning the static properties and inter-scale working
principles of balanced entropy can be seen in (Martı́n et al., 2005;
Rey, 2006).

2.5. Testing for self-similarity

BE analysis offers a complementary procedure yielding
information about the process structuring the mass spreading.
In particular it tells us whether the output distribution of a fractal
cascade is compatible with the ATLOR distribution within a range
of scales. Our purpose is to learn which one of the biomass
splittings defined for the self-similar cascades passing the KS test is
closer to the ATLOR data.

The method is implemented as follows. For each one of the
simulation cascades that passed the KS test, the BE indices of
the ATLOR distribution are computed for the partitions defined by
the cascade up to the k = 8 level. The sequence of these BE values is

compared with that of the BE values of the self-similar cascade,
which are all given by the same number (in turn coinciding with
the fractal (entropy) dimension of the limit distribution (Deliu
et al., 1991)). The cascade for which the sum of the absolute values
of the differences of the eight BE values is minimal is then chosen as
the best replication of the ATLOR data. The procedure thus
systematically explores the ATLOR mass distribution across each
one of the partitioning schemes associated with the admissible
cascades choosing the best scheme. This is specified below.

1. Let s1, s2, define one of the admissible cascades P (that passed the
KS test at a level k given). Let

Q
1 = {I1, I2, I3} be the basic partition

associated with P and
Q

j (j = 1, 2, . . ., k) be the sequence of
partitions generated by the cascade (i.e.

Q
j is made up by the jth

generation of size intervals Ii1 i2 ...i j
).

2. For the ATLOR m mass distribution and for each partition
Q

j,
j = 1, 2, . . ., k, compute the BE index to obtain the sequence
BE(j) = BE(m,

Q
j), j = 1, 2, . . ., k.

3. Calculate the BE index for the self-similar cascade, defined by

BEðPÞ ¼
P3

i¼1 PðIiÞlog PðIiÞ
P3

i¼1 PðIiÞlog ri

;

and verifying BE(P,
Q

j) = BE(P) for any j. Compute the differences
BE(j) � BE(P) for j = 1, 2, . . ., k.
4. Determine P* such that DðPÞ ¼

Pk
j¼1 BEð jÞ � BEðPÞj j is minimum.

3. Results

Fig. 1 displays in a log–log plot the number of individuals N(s) –
in the full ATLOR dataset – with body weights greater than s. The
sequence follows a remarkable power-law behaviour, namely
N(s) � s�12 within the whole range of scales. This is the kind of
scale invariance claimed to be typically associated with an
underlying fractal behaviour.

Species rank–size plotting is a common method to look at
underlying mass-size structure of ecological communities (Magur-
ran, 2004). The biomass contributions by each species are arranged
according to their rank (from the most to the least important
contributions) to obtain the plot in Fig. 2—only the list of ATLOR
species contributing at least 0.1% of the total biomass are included
in the count (these are 71 species accounting for 98.5% of the total
ATLOR biomass data).

The amount of biomass by each species turns out to be an
inverse power of its rank. This is a type of Pareto’s law which, as
explained above, holds for a number of different phenomena and
essentially remains unexplained.

All 12,720 possible trinomial cascades that can be defined by
choosing two intermediate ATLOR weight data points s1 < s2 (with
0 = a < s1 < s2 < b = 0.2) have been simulated up to stage k = 8. This
amounts to generating 6561 intermediate size points within the
full size interval, thereby inducing a discretization of the simulated
distribution which is much finer than the original data.

For level a = 0.05 and stage k = 8, the KS test rejected 11,941
simulations. Thus 779 self-similar cascades (6.12% of the total
number) passed the KS test at a 95% confidence level. Among those
779 cascades a best self-similar one P* is chosen according to its
performance in terms of the BE criteria explained in the preceding
section, i.e. P* minimizes DðPÞ ¼

Pk
j¼1 BEð jÞ � BEðPÞj j over the class

of cascades that passed the KS test.
Table 2 shows the best choice P* for k = 8. The distribution P* is

defined for the s1 = 0.008, s2 = 0.026 size limits. This corresponds to
a distribution of total biomass that assigns 5.53% of it to the weight
interval [0,0.008], 23.43% to the interval [0.008,0.026] and 71.04%
to the [0.026,0.2] interval. In Fig. 3 we plot the ATLOR and the P*
distributions.

C. Garcı́a-Gutiérrez et al. / Ecological Complexity 6 (2009) 246–253 249



Author's personal copy

4. Discussion

It is remarkable that a preliminary description of the data size
structure (see Fig. 1) renders features which are consistent with a
fractal genesis of the distribution. Also, Fig. 2 suggests strong
evidence in favour of Pareto’s law for the ATLOR biomass data,
which is not an uncommon structure for the biomass species
distribution (Magurran, 2004). This is an interesting result, but not
directly related to our approach, since size classes hold together
individuals of different species.

At a 95% confidence level, 6.12% of the total number of cascades
produces distributions that do not differ statistically from the
ATLOR distribution (at the stage k = 8 of the construction, i.e. using
6561 intermediate points). It is a significant qualitative finding that
synthetic distributions generated from just three size data points
(s1, s2 and 0.2) can reproduce the ATLOR distribution, which
originates from 162 points.

By minimizing D(P), not only does P* resemble the ATLOR data
at the size resolution scale defined by k = 8 but it also supplies a
self-similar biomass spreading scheme across scales (those defined
from k = 1 to k = 7) that is consistent with that of the ATLOR
distribution.

In order to get a fair picture of the minimality property satisfied
by P*, we show in Fig. 4 the differences BE(j) � BE(P) for j = 1,
2, . . ., 8 for the best case (P = P*) and for the worst case, within the
family of cascades that passed KS test.

Also plotted in Fig. 4 are the mean, maximum and minimum
differences BE(j) � BE(P) among all P’s that passed the KS test,
along with the difference values for the best P. Notice that the
choice of P* implies that the area between the (^) line
(corresponding to P*) and the x-axis, is minimal.

The distribution P* is plotted together with the ATLOR
distribution in Fig. 3. The closeness appears particularly fitting
for the size range 0–0.85 kg – considered in Lurié and Wagensberg
(1983) – probably because the fishery data are richer within this
range. By construction, the distribution P* and the ATLOR
distribution assign the same biomass fraction to each the basic
intervals [0,0.008], [0.008,0.026], and [0.026,0.2], respectively. The
self-similar modelling permits the scanning of the biomass
distribution lying inside those intervals at any desired size
resolution. Notice that this is achieved at the price of just two
generating parameters, namely s1 = 0.008 and s2 = 0.026 (plus the
accompanying biomass proportions).

The obtained index value BE(P*) = 0.88 – not too far from unity –
indicates that the cascade spreads the mass not too asymmetrically
but not uniformly either. In fact, in the limit, the construction
generates a self-similar distribution whose fractal dimension is
0.88. This is a mathematical property of the BE index: for a self-
similar cascade: BE(P) coincides with the entropy dimension and

Fig. 2. Rank/biomass plot for ATLOR data. The total biomasses contributed by each

species in the ATLOR data are represented from larger to smaller contributions (for

species with biomass percentages >0.1%). A remarkable inverse power law

dependence (Pareto-type law) is obtained for the species rank–biomass disribution.

Fig. 1. A Pareto-type law for ATLOR data. Using the full ATLOR dataset, the number of individuals N(s) with body weight greater than s is plotted against s in a log–log plot

together with the best linear fit, with shows an excelent coefficient of determination. A Pareto law seems to holds for N(s) which may be seen as a consequence of scale

invariance.

Table 2
Best self-similar cascade replicating the ATLOR distribution.

Stage (intermediate

weight data points)

Best P* parameters KS test (95%) BE analysis

k0.05 K-value BE(P) D(P)

k = 8
Q

(kg) I1 = [0,0.008] I2 = [0.008,0.026] I3 = [0.026,0.2] 0.1085 0.1015 0.8833 0.0260

(n = 6561) Mass 0.055285 0.234294 0.710421

The parameters defining the best cascade model are presented along with the values of the KS statistic and BE analysis. The best self-similar replication P* of the ATLOR data is

defined in two steps. First, self-similar cascades passing the Kolmogorov–Smirnov test (95%) are filtered out among the class of admissible trinomial self-similar cascades (at

stage k = 8 of their construction). Then P* is selected within that subclass as the minimizer of DðPÞ ¼
Pk

j¼1 BEð jÞ � BEðPÞj jwhich is a measure of closeness in the way the mass is

split in size classes across scales (BE(j) is the balanced entropy at stage j of ATLOR data while BE(P) is the balanced entropy – constant at each stage – of a self-similar cascade

P). The winner cascade P* corresponds to the size limits s1 = 0.008, s2 = 0.026. This amounts to split the total biomass by assigning 5.53% of biomass within weight interval

[0,0.008], 23.43% within [0.008,0.026] and 71.04% within [0.026,0.2].
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the Hausdorff dimension of the limit distribution P (Deliu et al.,
1991). Thus, P* supplies a pre-fractal distribution within any range
of scales (in particular, up to stage k = 8) and serves as a true fractal
model for the biomass ATLOR distribution.

It seems natural that the obtained self-similar modelling should
not depend critically on their constituent parameters, i.e. s1, s2

plus the fractions of biomass supported by the size intervals,
p�1 ¼ mð½0; s1�Þ, p�2 ¼ mð½s1; s2�Þ, and p�3 ¼ mð½s2;0:2�Þ (m stands for
the ATLOR biomass distribution.) Thus, small changes in the
parameters should produce models that are still valid, i.e. passing
the KS test at a 95% significance and yielding values of D(P) that
remain close to D(P*). Since the BE index – in turn D(P) – varies
continuously with the masses P(Ii) and sizes ri, it is clear that small
variations in the parameters si and/or p�i produce similar values of
D(P) and thus self-similar cascades splitting the biomass approxi-
mately in the same way across scales. This contributes to solve the
issue of sensitivity with respect to the BE analysis. A similar
reasoning may apply with respect to the KS test.

Notice that only the class of deterministic cascades has been
considered so far as an initial model for biomass data. Since a
deterministic model seems to do the job it appeared unnecessary
to look for random model. However, if the deterministic model is to
be considered plausible, small random perturbations of the
distribution of biomasses defined by P* should also do the job.
Using random cascades like those described above, we have tested
whether noisy versions of the deterministic cascade P* still
produce valid simulations. Specifically, at each level of the
construction, the random variables Vj in the random scheme are
defined to be Gaussian with mean p�i and standard deviation wj

given by a fraction a of p�i , for i = 1, 2, so that p3 = 1 � p1 � p2. We
show in Table 3 the results of the KS test for different values of a
obtained from an ensemble of 100 realizations of the random
cascade for each considered value of a.

As expected, for small values of the perturbation of the biomass
fractions (a = 0.05), all of the noisy cascades pass the KS test at
significance level of 95%. As the perturbation in the biomass

Fig. 4. Balanced entropy (BE) analysis for ATLOR distribution (weight size fish biomass). The best self-similar cascade was selected to minimize the sum of absolute values of

the differences of BE indices of the cascade BE(P) and the ATLOR distribution BE(j) for j = 1–8 among the family of cascades that passed the KS test at stage j = 8 (6.12% of

possible cascades). The maximum (~), minimum (*), mean (*), and worst case (&) of the differences BE(P) � BE(j) for each stage from j = 1–8 for all cascades P passing the

KS test are plotted along with the sequence BE(P*) � BE(j) (^) corresponding to the minimizing cascade P*.

Fig. 3. Cumulative distributions of ATLOR data and of the best simulation P*. While ATLOR cumulative is obtained from 161 intermediate size data points, the cumulative of P*

is constructed from 6561 size point generated by the cascade (at stage k = 8 of the construction). The biomass histogram of P* on the initial size partition [0,0.008],

[0.008,0.026], [0.026,0.2] is also displayed. By construction, this histogram is the same for the ATLOR distribution.
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fractions p�i increases, less and less simulations pass the test. For
a = 0.5 practically none of the realizations pass the test. The results
of this exercise confirm the robustness of the method.

The method combines a non-parametric (KS) statistical test,
comparing sample and synthetic distributions at a chosen scale,
with the (BE) analysis of biomass spread across scales given by the
partitions defined by the cascades. Notice the difference between
the KS test and the BE analysis. Whereas the former is concerned
with a static property of the generated output distribution and
looks at goodness of fit in a distributional sense, the latter allows us
to look for the generating process underneath by scanning mass
fragmentation within many partition sequences, eventually
choosing the best in self-similarity terms.

5. Conclusions

In this paper we address the possibility of determining a fractal
genesis for the distribution of biomass across body sizes in an
ecological community. A fractal distribution model for biomass
distributional data is proposed. The model distribution is
generated by a deterministic self-similar cascade which is
determined from only two intermediate size data points.

The method is applied to fishery data reporting fish body weight
distribution from a large sample of catches in the northwest coast
of Africa. It permits us to single out a cascade which mimics the
fishery distribution in two different ways, both statistically and
constructively. On one hand, the cascade cannot be distinguished
statistically from data at a fine size resolution (defined by the
cascade partition at a given level of construction). On the other
hand, the field data splits the biomass approximately in a self-
similar way across a range of scales (also defined by the cascade
partitions).

Strictly speaking our proposed method cannot claim to
reproduce the distribution of the whole community of a sampled
ecosystem. This is mainly due to limitations imposed by data
records. On one side, there are obvious constraints in the wide-
spread of data size range because of the fishing gear and related
sampling procedures. Also, the construction of a cascade requires
the specification of a body size interval in which the synthetic
distribution is supported. This truncation of the true distribution
implies that the processed biomass distribution lacks biomass
supported by tiny and huge body sizes and in turn that biomass
self-similarity cannot be claimed to hold for the full community. It
is remarkable, however, that a cascade can be defined that
distributes biomass in a self-similar way across a range of scales in
a way that cannot be statistically differentiated from biomass data
at a fine scale of body mass sizes.

A main qualitative finding is that fractal distributions may serve
as underlying models for biomass-size distributions. It structures
biomass diversity within an ecosystem. Once a fractal model has
been consistently tested to replicate data, it can be quantitatively
exploited to reproduce intermediate distributional values that are

not accessible from field observations. In the case of self-similar
cascades it is remarkable that the distribution can be scanned at
arbitrary intermediate values just from the knowledge of three size
intervals along with their biomass content.
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